請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8200完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋(Ting-Jang Lu) | |
| dc.contributor.author | Wei-Yuan Wu | en |
| dc.contributor.author | 吳瑋元 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:50:00Z | - |
| dc.date.available | 2025-12-31 | |
| dc.date.available | 2021-05-20T00:50:00Z | - |
| dc.date.copyright | 2021-03-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-08 | |
| dc.identifier.citation | 劉忬函。(2019)。加工肉產品之活性雙羰基物質及糖化終產物分析。國立臺灣大學食品科技研究所碩士論文。 Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M. Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V.; Moinuddin, AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol. 2018, 49, 44-55. Allaman, I.; Bélanger, M.; Magistretti, P. J. J. F. i. n., Methylglyoxal, the dark side of glycolysis. 2015, 9, 23. Arena, E.; Ballistreri, G.; Tomaselli, F.; Fallico, B., Survey of 1,2-dicarbonyl compounds in commercial honey of different floral origin. J. Food Sci. 2011, 76, C1203-C1210. Atrott, J.; Haberlau, S.; Henle, T., Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydr. Res. 2012, 361, 7-11. Ball, D. W., The chemical composition of maple syrup. Journal of Chemical Education 2007, 84, 1647. Bao, J. M.; He, M. Y.; Liu, Y. W.; Lu, Y. J.; Hong, Y. Q.; Luo, H. H.; Ren, Z. L.; Zhao, S. C.; Jiang, Y., AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. Am. J. Cancer Res. 2015, 5, 1741-1750. Bhuiyan, M. N. I.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M., Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem. 2017, 81, 882-890. Bierhaus, A.; Fleming, T.; Stoyanov, S.; Leffler, A.; Babes, A.; Neacsu, C.; Sauer, S. K.; Eberhardt, M.; Schnölzer, M.; Lasitschka, F., Methylglyoxal modification of Na v 1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature medicine 2012, 18, 926-933. Bruhns, P.; Kaufmann, M.; Koch, T.; Kroh, L. W., 2-Deoxyglucosone: a new C-6-alpha-dicarbonyl compound in the maillard reaction of D-fructose with gamma-aminobutyric acid. J. Agric. Food Chem. 2018, 66, 11806-11811. Collard, F.; Vertommen, D.; Fortpied, J.; Duester, G.; Van Schaftingen, E., Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1). Biochimie 2007, 89, 369-373. Daglia, M.; Ferrari, D.; Collina, S.; Curti, V., Influence of in vitro simulated gastroduodenal digestion on methylglyoxal concentration of manuka (Lectospermum scoparium) honey. J. Agric. Food Chem. 2013, 61, 2140-2145. Degen, J.; Hellwig, M.; Henle, T., 1,2-Dicarbonyl compounds in commonly consumed foods. J. Agric. Food Chem. 2012, 60, 7071-7079. Degen, J.; Beyer, H.; Heymann, B.; Hellwig, M.; Henle, T., Dietary influence on urinary excretion of 3-deoxyglucosone and its metabolite 3-deoxyfructose. J. Agric. Food Chem. 2014, 62, 2449-2456. Escobosa, A. R. C.; Ojeda, A. G.; Wrobel, K.; Magana, A. A.; Wrobel, K., Methylglyoxal is associated with bacteriostatic activity of high fructose agave syrups. Food Chem. 2014, 165, 444-450. Economic Research Service, 2020, Sugar and sweeteners yearbook tables. Available at: https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx. Accessed February 2, 2021 FDA, Acceptance criteria for confirmation of identity of chemical residues using exact mass data within the office of foods and veterinary medicine (2015). In Silver Spring, MD: Food and Drug Administration, 2015. Feng, T.-T.; Xu, X.-B.; Du, M.; Tan, M.-Q.; Qin, L.; Zhu, B.-W. J. A. M., Simultaneous determination of glyoxal, methylglyoxal and diacetyl in beverages using vortex-assisted liquid–liquid microextraction coupled with HPLC-DAD. 2017, 9, 2445-2451. Gahlawat, S. K.; Salar, R. K.; Siwach, P.; Duhan, J. S.; Kumar, S.; Kaur, P., Plant Biotechnology: Recent Advancements and Developments. Springer: 2017. Garcia-Aguirre, M.; Saenz-Alvaro, V. A.; Rodriguez-Soto, M. A.; Vicente-Magueyal, F. J.; Botello-Alvarez, E.; Jimenez-Islas, H.; Cardenas-Manriquez, M.; Rico-Martinez, R.; Navarrete-Bolanos, J. L., Strategy for biotechnological process design applied to the enzymatic hydrolysis of agave fructo-oligosaccharides to obtain fructose-rich syrups. J. Agric. Food Chem. 2009, 57, 10205-10210. Gensberger, S.; Mittelmaier, S.; Glomb, M. A.; Pischetsrieder, M., Identification and quantification of six major alpha-dicarbonyl process contaminants in high-fructose corn syrup. Anal. Bioanal. Chem. 2012, 403, 2923-2931. Gensberger, S.; Glomb, M. A.; Pischetsrieder, M., Analysis of sugar degradation products with alpha-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. J. Agric. Food Chem. 2013, 61, 10238-10245. Gensberger, S.; Knabner, C.; Waibel, R.; Huppert, J.; Pischetsrieder, M., Qualitative profiling of polyglucose degradation products in peritoneal dialysis fluids. Anal. Chem. 2015, 87, 6103-6111. Glomb, M.; Gobert, J.; Voigt, M., Dicarbonyls from Maillard degradation of glucose and maltose. In Controlling Maillard Pathways To Generate Flavors, ACS Publications: 2010; pp 35-44. Glomb, M. A.; Tschirnich, R., Detection of α-dicarbonyl compounds in Maillard reaction systems and in vivo. J. Agric. Food Chem. 2001, 49, 5543-5550. Gobert, J.; Glomb, M. A., Degradation of Glucose: Reinvestigation of reactive alpha-dicarbonyl compounds. J. Agric. Food Chem. 2009, 57, 8591-8597. Guzmanmaldonado, H.; Paredeslopez, O., Amylolytic enzymes and products derived from starch - a review. Crit. Rev. Food Sci. Nutr. 1995, 35, 373-403. Harsha, P.; Mesias, M.; Lavelli, V.; Morales, F. J., Grape skin extracts from winemaking by-products as a source of trapping agents forreactive carbonyl species. J. Sci. Food Agric. 2016, 96, 656-663. Hayashi, T.; Namiki, M., On the mechanism of free radical formation during browning reaction of sugars with amino compounds. Agricultural and Biological Chemistry 1981, 45, 933-939. Hayashi, T.; Shibamoto, T., Analysis of methyl glyoxal in foods and beverages. J. Agric. Food Chem. 1985, 33, 1090-1093. Hellwig, M.; Geissler, S.; Peto, A.; Knutter, I.; Brandsch, M.; Henle, T., Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells. J. Agric. Food Chem. 2009, 57, 6474-6480. Hellwig, M.; Degen, J.; Henle, T., 3-Deoxygalactosone, a 'New' 1,2-dicarbonyl compound in milk products. J. Agric. Food Chem. 2010, 58, 10752-10760. Hellwig, M.; Nobis, A.; Witte, S.; Henle, T., Occurrence of (Z)-3,4-dideoxyglucoson-3-ene in different types of beer and malt beer as a result of 3-deoxyhexosone interconversion. J. Agric. Food Chem. 2016, 64, 2746-2753. Henning, C.; Liehr, K.; Girndt, M.; Ulrich, C.; Glomb, M. A., Extending the spectrum of alpha-dicarbonyl compounds in vivo. J. Biol. Chem. 2014, 289, 28676-28688. Hollnagel, A.; Kroh, L. W., Formation of alpha-dicarbonyl fragments from mono- and disaccharides under caramelization and Maillard reaction conditions. Z Lebensm. Unters. Forsch. A-Food Res. Technol. 1998, 207, 50-54. Hollnagel, A.; Kroh, L. W., 3-Deoxypentosulose: an α-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution. J. Agric. Food Chem. 2002, 50, 1659-1664. Hrynets, Y.; Ndagijimana, M.; Betti, M., Studies on the formation of maillard and caramelization products from glucosamine incubated at 37 degrees C. J. Agric. Food Chem. 2015, 63, 6249-6261. Huang, J. S.; Guh, J. Y.; Chen, H. C.; Hung, W. C.; Lai, Y. H.; Chuang, L. Y., Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J. Cell. Biochem. 2001, 81, 102-113. Hwang, S. H.; Kim, H. Y.; Zuo, G. L.; Wang, Z. Q.; Lee, J. Y.; Lim, S. S., Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules 2018, 23, 14. Jeong, J. H.; Cha, J.; Lee, K. G., Validation of analytical method for -dicarbonyl compounds using gas chromatography-nitrogen phosphorous detector and their levels in alcoholic beverages. Int. J. Food Sci. Technol. 2017, 52, 1491-1497. Kanzler, C.; Schestkowa, H.; Haase, P. T.; Kroh, L. W., Formation of reactive intermediates, color, and antioxidant activity in the Maillard reaction of maltose in comparison to d-glucose. J. Agric. Food Chem. 2017, 65, 8957-8965. Kato, H.; van Chuyen, N.; Shinoda, T.; Sekiya, F.; Hayase, F., Metabolism of 3-deoxyglucosone, an intermediate compound in the Maillard reaction, administered orally or intravenously to rats. Biochimica et Biophysica Acta (BBA)-General Subjects 1990, 1035, 71-76. Kocadagli, T.; Gokmen, V., Investigation of alpha-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J. Agric. Food Chem. 2014, 62, 7714-7720. Lee, C. C.; Lee, B. H.; Lai, Y. J., Antioxidation and antiglycation of Fagopyrum tataricum ethanol extract. J. Food Sci. Technol.-Mysore 2015, 52, 1110-1116. Li, X. M.; Zheng, T. S.; Sang, S. M.; Lv, L. S., Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J. Agric. Food Chem. 2014, 62, 12152-12158. Lin, J. A.; Wu, C. H.; Yen, G. C., Perspective of advanced glycation end products on human health. J. Agric. Food Chem. 2018, 66, 2065-2070. Liu, G. M.; Xia, Q. Q.; Lu, Y. L.; Zheng, T. S.; Sang, S. M.; Lv, L. S., Influence of quercetin and its methylglyoxal adducts on the formation of alpha-dicarbonyl compounds in a lysine/glucose model system. J. Agric. Food Chem. 2017, 65, 2233-2239. Lo, C. Y.; Li, S. M.; Wang, Y.; Tan, D.; Pan, M. H.; Sang, S. M.; Ho, C. T., Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem. 2008, 107, 1099-1105. Lo, C. Y.; Hsiao, W. T.; Chen, X. Y., Efficiency of trapping methylglyoxal by phenols and phenolic acids. J. Food Sci. 2011, 76, H90-H96. Loidl-Stahlhofen, A.; Spitelier, G., α-Hydroxyaldehydes, products of lipid peroxidation. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1994, 1211, 156-160. Lv, L. S.; Shao, X.; Chen, H. D.; Ho, C. T.; Sang, S. M., Genistein Inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 2011, 24, 579-586. Marceau, E.; Yaylayan, V. A., Profiling of alpha-dicarbonyl content of commercial honeys from different botanical origins: identification of 3,4-dideoxyglucoson-3-ene (3,4-DGE) and related compounds. J. Agric. Food Chem. 2009, 57, 10837-10844. Matsuda, H.; Wang, T.; Managi, H.; Yoshikawa, M., Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem. 2003, 11, 5317-5323. Mavric, E.; Wittmann, S.; Barth, G.; Henle, T., Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483-489. Mittelmaier, S.; Funfrocken, M.; Fenn, D.; Fichert, T.; Pischetsrieder, M., Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J. Chromatogr. B 2010, 878, 877-882. Mittelmaier, S.; Funfrocken, M.; Fenn, D.; Berlich, R.; Pischetsrieder, M., Quantification of the six major alpha-dicarbonyl contaminants in peritoneal dialysis fluids by UHPLC/DAD/MSMS. Anal. Bioanal. Chem. 2011a, 401, 1183-1193. Mittelmaier, S.; Funfrocken, M.; Fenn, D.; Pischetsrieder, M., 3-Deoxygalactosone, a new glucose degradation product in peritoneal dialysis fluids: Identification, quantification by HPLC/DAD/MSMS and its pathway of formation. Anal. Bioanal. Chem. 2011b, 399, 1689-1697. Mittelmaier, S.; Pischetsrieder, M., Multistep Ultrahigh performance liquid chromatography/tandem mass spectrometry analysis for untargeted quantification of glycating activity and identification of most relevant glycation products. Anal. Chem. 2011, 83, 9660-9668. Morcos, M.; Du, X.; Pfisterer, F.; Hutter, H.; Sayed, A. A.; Thornalley, P.; Ahmed, N.; Baynes, J.; Thorpe, S.; Kukudov, G., Glyoxalase‐1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging cell 2008, 7, 260-269. Odani, H.; Shinzato, T.; Matsumoto, Y.; Usami, J.; Maeda, K., Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 1999, 256, 89-93. Parker, K.; Salas, M.; Nwosu, V. C. J. B.; Reviews, M. B., High fructose corn syrup: production, uses and public health concerns. 2010, 5, 71-78. Potipiranun, T.; Adisakwattana, S.; Worawalai, W.; Ramadhan, R.; Phuwapraisirisan, P., Identification of pinocembrin as an anti-glycation agent and alpha-glucosidase inhibitor from Fingerroot (Boesenbergia rotunda): The tentative structure-activity relationship towards MG-trapping activity. Molecules 2018, 23, 13. Rabbani, N.; Thornalley, P. J., Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. In Portland Press Ltd.: 2008. Rakete, S.; Klaus, A.; Glomb, M. A., Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer. J. Agric. Food Chem. 2014, 62, 9876-9884. Sell, D. R.; Monnier, V. M., Structure elucidation of a senescence cross-link from human extracellular-matrix - implication of pentoses in the aging process. J. Biol. Chem. 1989, 264, 21597-21602. Semba, R. D.; Bandinelli, S.; Sun, K.; Guralnik, J. M.; Ferrucci, L., Plasma carboxymethyl‐lysine, an advanced glycation end product, and all‐cause and cardiovascular disease mortality in older community‐dwelling adults. Journal of the American Geriatrics Society 2009, 57, 1874-1880. Shao, X.; Chen, H. D.; Zhu, Y. D.; Sedighi, R.; Ho, C. T.; Sang, S. M., Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. J. Agric. Food Chem. 2014, 62, 3202-3210. Smuda, M.; Glomb, M. A., Novel insights into the maillard catalyzed degradation of maltose. J. Agric. Food Chem. 2011, 59, 13254-13264. Soboleva, A.; Vikhnina, M.; Grishina, T.; Frolov, A., Probing protein glycation by chromatography and mass spectrometry: analysis of glycation adducts. Int. J. Mol. Sci. 2017, 18, 32. Szwergold, B. S.; Kappler, F.; Brown, T. R., Identification of fructose 3-phosphate in the lens of diabetic rats. Science 1990, 247, 451-454. Thornalley, P.; Wolff, S.; Crabbe, J.; Stern, A., The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochimica et Biophysica Acta (BBA)-General Subjects 1984, 797, 276-287. Usui, T.; Yanagisawa, S.; Ohguchi, M.; Yoshino, M.; Kawabata, R.; Kishimoto, J.; Arai, Y.; Aida, K.; Watanabe, H.; Hayase, F., Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars. Biosci. Biotechnol. Biochem. 2007, 71, 2465-2472. Voigt, M.; Glomb, M. A., Reactivity of 1-Deoxy-D-erythro-hexo-2,3-diulose: A key intermediate in the maillard chemistry of hexoses. J. Agric. Food Chem. 2009, 57, 4765-4770. Waleckx, E.; Gschaedler, A.; Colonna-Ceccaldi, B.; Monsan, P., Hydrolysis of fructans from Agave tequilana Weber var. azul during the cooking step in a traditional tequila elaboration process. Food Chem. 2008, 108, 40-48. Wang, C.; Lu, Y. L.; Huang, Q. J.; Zheng, T. S.; Sang, S. M.; Lv, L. S., Levels and formation of alpha-dicarbonyl compounds in beverages and the preventive effects of flavonoids. J. Food Sci. Technol.-Mysore 2017, 54, 2030-2040. Wautier, M. P.; Chappey, O.; Corda, S.; Stern, D. M.; Schimidt, A. M.; Wautier, J. L., Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol.-Endocrinol. Metab. 2001, 280, E685-E694. White, J. S., Sucrose, HFCS, and fructose: history, manufacture, composition, applications, and production. In Fructose, high fructose corn syrup, sucrose and health, Springer: 2014; pp 13-33. Willems, J. L.; Low, N. H., Major carbohydrate, polyol, and oligosaccharide profiles of agave syrup. Application of this data to authenticity analysis. J. Agric. Food Chem. 2012, 60, 8745-8754. Yan, S.; Sun, M. H.; Zhao, L. L.; Wang, K.; Fang, X. M.; Wu, L. M.; Xue, X. F., Comparison of differences of alpha-dicarbonyl compounds between naturally matured and artificially heated acacia honey: their application to determine honey quality. J. Agric. Food Chem. 2019, 67, 12885-12894. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8200 | - |
| dc.description.abstract | 活性雙羰基物質(reactive dicarbonyl species, RDS)為醣類降解物,容易在焦糖化反應及梅納反應中生成,被認為是造成代謝相關疾病的原因之一。市售糖漿在製作過程中使用的熱處理可能產生大量的RDS。為了瞭解市售糖漿中RDS的含量及分布,本研究利用o-phenylenediamine將RDS衍生成quinoxaline類化合物,搭配液相層析串聯質譜法同步分析市售糖漿中16種RDS,其中包含glyoxal及methylglyoxal。除此之外亦針對分析方法進行最適化,包含空白樣品、衍生劑品牌、衍生條件、淨化試劑、RDS衍生物穩定度及分析管柱的選擇。RDS總含量在高果糖糖漿(754.5-1318 μg/g)及龍舌蘭糖漿(大於1024 μg/g)中較高;葡萄糖糖漿(0.625-78.99 μg/g)、麥芽糖糖漿(8.413-10.30 μg/g)及楓糖漿(2.511-17.81 μg/g)則較低;葡萄糖、果糖及蔗糖中亦可偵測到RDS (trace-177.6 μg/g)。本分析方法未來可用於分析市售糖漿在製作及儲藏過程中RDS的分布及變化,並對市售產品進行品質控管。 | zh_TW |
| dc.description.abstract | Reactive dicarbonyl species (RDS), the degradation products of saccharides in caramelization and Maillard reactions, are considered to be related to the diabetic complications and chronic diseases. It can be expected that abundant RDS emerge in the commercial syrups due to the thermal processing. In order to monitor RDS in commercial syrups, RDS are derivatized with o-phenylenediamine to quinoxaline derivatives. There are 16 RDS analyzed simultaneously by LC-MS/MS, including glyoxal and methylglyoxal. In addition, this analytical method is optimized, including blank, the brand of derivatization reagent, derivatization conditions, clean-up solvents, stability of quinoxaline derivative, and analytical column. Contents of total RDS are higher in high-fructose syrups (754.5-1318 μg/g) and agave syrups (beyond 1024 μg/g) than that in glucose syrups (0.625-78.99 μg/g), maltose syrups (8.413-10.30 μg/g), and maple syrups (2.511-17.81 μg/g). RDS are also detected in glucose, fructose and sucrose (trace-177.6 μg/g). This analytical method can be applied to understand the distribution and change of contents of RDS in the commercia syrups during the production process and storage, and further monitor the quality of syrups. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:50:00Z (GMT). No. of bitstreams: 1 U0001-0802202111191300.pdf: 7560025 bytes, checksum: 1aa31f603e80edd018063bf6cb27e894 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I Abstract III 圖目錄 VII 表目錄 X 壹、前言 1 貳、文獻回顧 2 第一節、活性雙羰基物質 2 一、結構與活性 2 二、來源與清除 7 三、分析方法 16 第二節、糖化終產物 23 一、結構與活性 23 二、來源與清除 25 第三節、活性雙羰基物質清除劑 27 一、黃酮類化合物 27 第四節、市售糖漿 29 一、高果糖糖漿 29 二、龍舌蘭糖漿 33 參、研究目的與實驗架構 34 肆、材料與方法 35 第一節、實驗材料 35 第二節、藥劑與試劑 36 第三節、儀器設備與軟體 38 第四節、實驗方法 40 伍、結果與討論 46 第一節、活性雙羰基物質之建議分析方法 46 第二節、活性雙羰基物質分析平台的最佳化 48 一、衍生劑品牌的選擇 48 二、空白樣品的選擇 48 三、衍生條件的選擇 50 四、淨化試劑的選擇 54 五、活性雙羰基物質衍生物的穩定性評估 57 六、分析管柱的選擇 60 第三節、活性雙羰基物質定性分析 66 一、活性雙羰基物質衍生物於液相層析串聯質譜儀之檢測模式 66 第四節、方法確效 71 一、活性雙羰基物質之基質匹配檢量線、方法定量極限及回收率 71 第五節、市售糖漿中活性雙羰基物質含量 75 陸、結論 84 柒、參考文獻 85 捌、附錄 92 第一節、活性雙羰基物質衍生物之一次離子及二次離子萃取離子層析圖 92 第二節、活性雙羰基物質衍生物之結構解析 94 第三節、參考文獻中活性雙羰基物質衍生物之二次離子 109 第四節、活性雙羰基物質之可能生成機制 112 第五節、活性雙羰基物質之品質管制系統 116 第六節、其他 126 | |
| dc.language.iso | zh-TW | |
| dc.title | 以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 | zh_TW |
| dc.title | Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝淑貞(Shu-Chen Hsieh),陳宏彰(Hung-Jang Chen),張永和(Yung-Ho Chang),魏國晉(Guor-Jien Wei) | |
| dc.subject.keyword | 活性雙羰基物質,液相層析串聯質譜法,glyoxal,methylglyoxal,高果糖糖漿, | zh_TW |
| dc.subject.keyword | reactive dicarbonyl species,LC-MS/MS,glyoxal,methylglyoxal,high fructose syrups, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU202100669 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-02-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2025-12-31 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202111191300.pdf | 7.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
