Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81978
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾(Yao-Chien Alex Chang)
dc.contributor.authorWei-Yang Sunen
dc.contributor.author孫維揚zh_TW
dc.date.accessioned2022-11-25T05:33:30Z-
dc.date.available2026-09-11
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-11
dc.identifier.citation么煥英. 2007. 應用 Pour-through介質溶液測定法於以水苔栽培之蝴蝶蘭. 國立台灣大學園藝系研究所碩士論文. 台北. 林思佑、陳香君、鍾仁賜、張耀乾. 2013. 株齡影響蝴蝶蘭對介質鹽度的耐受度. 臺灣園藝59:1- 13. Beardsell, D.V. and D.G. Nichols. 1982. Wetting properties of dried-out nursery container media. Sci. Hort. 17:49-59. Bunt, A.C. 1986. Problems in the analysis of organic and lightweight potting substrates. HortScience. 21:229-231. Cabrera, R.I. 1998. Monitoring chemical properties of container growing media with small soil solution samplers. Sci. Hort. 79: 113- 119. Cardarelli, M., Y. Rouphael, A. Salerno, E. Rea, and G. Colla. 2012. Fertilizer concentration and irrigation method affects growth and flowering of two bedding plants. Acta Hort. 937: 689- 695. Caron, J., D. Elrick, R. Beeson, and J. Boudreau. 2005. Defining critical capillary rise properties for growing media in nurseries. Soil Sci. Soc. Am. J. 69: 794- 806. Caron, J., S. Pepin, and Y. Périard. 2014. Physics of growing media in a green future. Acta Hort. 1034: 309- 317. Caron, J., J. Price, and L. Rochefort. 2015. Physical properties of organic soil: adapting mineral soil concepts to horticultural growing media and histosol characterization. Vadose Zone J. 14: 1- 14. Caron, J., L.M. Riviere, S. Charpentier, P. Renault, and J.C. Michel. 2002. Using TDR to estimate hydraulic conductivity and air entry in growing media and sand. Soil Sci. Soc. Am. J. 66: 373- 383. Dycus, A.M. and L. Knudson. 1957. The role of the velamen of the aerial roots of orchids. Bot. Gaz. 119: 78- 87. Fares, A. and V. Polyakov. 2006. Advances in crop water management using capacitive water sensors. Adv. Agron. 90: 43- 77. Griesbach, R.J. 2000. Potted Phalaenopsis orchid production: history, present status, and challenges for the future. HortTechnology.10: 429. Grieve, C., S. Grattan, and E. Maas. 2011. Plant Salt Tolerance, p. 405-459. Agricultural Salinity Assessment and Management. Ha, B.Y., H.R. Kim, D.H. Kim, J.W. Woo, Y.J. Jo, and S.I. Kwon. 2018. Growth effects of the application of new controlled-release fertilizers on Phalaenopsis spp. Appl. Biol. Chem. 61:625-633. Hamed, Y., G. Samy, and M. Persson. 2006. Evaluation of the WET sensor compared to time domain reflectometry. Hydrol. Sci. J. 51: 671- 681. Harris, A., R.G. Bryant, and A.J. Baird. 2005. Detecting near-surface moisture stress in Sphagnum spp. Remote Sens. Environ. 97: 371- 381. Helalia, A.M., O.A. Al-Tapir, and Y.A. Al-Nabulsi. 1996. The influence of irrigation water salinity and fertilizer management on the yield of Alfalfa ( Medicago sativa L.). Agric. Water Manag. 31: 105- 114. Hilhorst, M.A. 1998. Dielectric characterization of soil. Wageningen Agriculture University, The Netherlands. Hillel, D. 1982. Introduction to soil physics. Academic Press. New York. America. Hwang, S.J. and B.R. Jeong. 2007. Growth of Phalaenopsis plants in five different potting media. J. Jpn. Soc. Hort. Sci. 76: 319- 326. Hwang, S.J., I. Sivanesan, and B.R. Jeong. 2009. Short- term ion uptake by Phalaenopsis as affected by concentration of the solution. J. Plant Nutr. 32: 2044- 2061. Jimenez-Pena, N., L.A. Valdez-Aguilar, A.M. Castillo-Gonzalez, M.T. Colinas-Leon, A.D. Cartmill, and D.L. Cartmill. 2013. Growing media and nutrient solution concentration affect vegetative growth and nutrition of Laelia anceps Lindl. HortScience 48: 773- 779. Kargas, G. and P. Kerkides. 2018. Determination of soil salinity based on WET measurements using the concept of salinity index. J. Plant. Nutr. Soil Sci. 181: 600-605. Kargas, G., P. Kerkides, and M.S. Seyfried. 2014. Response of three soil water sensors to variable solution electrical conductivity in different soils. Vadose Zone J. 13: 1- 13. Kargas, G., P. Kerkides, M. Seyfried, and A. Sgoumbopoulou. 2011. WET Sensor performance in organic and inorganic media with heterogeneous moisture distribution. Soil Sci. Soc. Am. J. 75:1244- 1252. Lemay, I., J. Caron, M. Dorais, and S. Pepin. 2012. Defining irrigation set points based on substrate properties for variable irrigation and constant matric potential devices in greenhouse tomato. HortScience. 47: 1141- 1152. Levesque, M. and H. Dinel. 1977. Fiber content, particle-size distribution and some related properties of four peat materials in eastern Canada. Can. J. Soil Sci. 57:187-195. Lo’ay, A.A. and S.F.A. El-Ezz. 2021. Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Sci. Hort. 275: 109704. Lopez, R.G. and E.S. Runkle. 2005. Environmental physiology of growth and flowering of orchids. HortScience 40: 1969- 1973. Martin, T., L. Marie-Pierre, and D. Blanche. 2009. Phalaenopsis can absorb urea directly through their roots. Plant Soil. 319: 95- 100. Michel, J.C., L.M. Rivière, and M.N. Bellon‐Fontaine. 2001. Measurement of the wettability of organic materials in relation to water content by the capillary rise method. Eur. J. Soil Sci. 52: 459- 467. Morita, H. 1980. Perspectives on carbohydrates as chemotaxonomic acids for peats. I.P.S., Proc. of the 6th I.P.C., Duluth. 633- 637. Naasz, R., M. J-C, and S. Charpentier. 2005. Measuring Hysteretic Hydraulic Properties of Peat and Pine Bark using a Transient Method. Soil Sci. Soc. Am. J. 69: 13- 22. Nelson, P.V. and W.R. Faber. 1986. Bulk solution displacement. HortScience 21: 225- 227. Noborio, K. 2001. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput. Electron. Agric. 31: 213- 237. Oleszczuk, R., T. Brandyk, T. Gnatowski, and J. SzatyŁOwicz. 2004. Calibration of TDR for moisture determination in peat deposits. Int. Agrophys. 18: 145- 151. Otten, W. 1994. Dynamics of water and nutrients for potted plants induced by flooded bench fertigation: experiments and simulation. Otten. Päivänen, J. 1973. Hydraulic conductivity and water retention in peat soils. Suomen metsätieteellinen seura. Paraskevopoulou, A.T., A. Kontodaimon Karantzi, G. Liakopoulos, P.A. Londra, and K. Bertsouklis. 2020. The effect of salinity on the growth of Lavender species. Water. 12: 618. Polak, A. and R. Wallach. 1997. Measuring soil moisture dynamics in an irrigated orchard by Time Domain Reflectometry method. Acta Hort. 562: 39- 46. Rhoades, J.D., P.A.C. Raats, and R.J. Prather. 1976. Effects of liquid‐phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 40: 651-655. Schmilewski, G. 2008. The role of peat in assuring the quality of growing media. Mires Peat 3:1- 8. Shehzad, I., G. Sarwar, M.Z. Manzoor, A. Zafar, S. Muhammad, and G. Murtaza. 2020. Effect of saline water irrigation on chemical properties and fertility status of soil. Pakistan journal of agricultural research. 33: 527- 534. Silva, F., R. Wallach, and Y. Chen. 1993. Hydraulic properties of sphagnum peat moss and tuff (scoria) and their potential effects on water availability. Plant Soil. 154: 119- 126. Tang, S., D. She, and H. Wang. 2020. Effect of salinity on soil structure and soil hydraulic characteristics. Can. J. Soil Sci. 101:62- 73. Topp, G., W. Zebchuk, J. Davis, and W. Bailey. 1984. The measurement of soil water content using a portable TDR hand probe. Can. J. Soil Sci. 64:313-321. Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16: 574- 582. Turunen, M., J. Hyväluoma, J. Heikkinen, R. Keskinen, J. Kaseva, J. Koestel, and K. Rasa. 2019. Quantifying physical properties of three sphagnum- based growing media as affected by drying–wetting cycles. Vadose Zone J. 18: 190033. Valat, B., C. Jouany, and L.M. Riviere. 1991. Characterization of the wetting properties of air-dried peats and composts. Soil Sci. 152: 100- 107. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Am. Soc. Hort. Sci. 127: 442- 447. Wang, Y.T. and L.L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience. 29: 269- 271. Wright, R.D. 1986. The pour-through nutrient extraction procedure. HortScience 21: 227- 229. Yao, H.Y., R.S. Chung, S.B. HO, and Y.C.A Chang. 2008. Adapting the pour- through medium extraction method to Phalaenopsis grown in sphagnum moss. HortScience. 43: 2167- 2170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81978-
dc.description.abstract"臺灣蝴蝶蘭 (Phalaenopsis spp.) 栽培目前常以插入式水分電導度儀測量介質狀態,而依循之介質溶液電導度 (pore water electrical conductivity, ECp) 建議值,係由Pour- through法 (PT法) 建立。PT法測值為介質 VWC (volumetric water content, VWC, θ) 於容器容水量 (container capacity) 下測得;插入式量測儀則能在不同 VWC下進行測量。然而 ECp會因介質 VWC下降而上升,無法與 PT法之建議值對照。且臺灣業者常以水苔栽種蝴蝶蘭,其理化性質與土壤差異極大,使用插入式量測儀進行監測之可行性尚須確立。 本研究使用之 Delta- T WET sensor,探討水苔 VWC、ECp與總鹽類含量之關係。水苔 ECp值與 VWC之變化關係為三次曲線,當水苔 VWC逐漸下降時,ECp測值會逐漸上升,且變化關係不受試驗中不同肥料 EC值 (0至 1.6 dS∙m-1)、肥料配方、乾燥循環所影響。故研究以容水量時測得之 ECp值定義為 ECp (θ= container capacity) (ECp (θ= cc)),可表示水苔內鹽類含量相同時,受 VWC下降而上升之 ECp值,即可與 PT法測值對應。並使用 VWC- ECp- ECp (θ= cc)關係建立之迴歸模型,將不同 VWC下測得之 ECp轉換成可統一比較之 ECp (θ= cc)以利量測結果之判讀。 水苔 ECp (θ= cc)可以做為判定水苔肥料管理之標準,故施用不同 EC值追肥後調查水苔 ECp (θ= cc)上升幅度,提供業者施肥時建議。澆灌不同濃度追肥之後,水苔 ECp (θ= cc)隨施用肥料濃度線性上升,不受原本水苔內鹽類含量影響。依照 ECp (θ= cc)施用追肥後的上升變化,得出澆灌 1 dS∙m-1液肥並使水苔增加 0.01 m3∙m-3 VWC時,水苔 ECp (θ= cc)會增加 0.018 dS∙m-1。業者可於施肥前計算預計增加之 VWC與 ECp (θ= cc),即可計算出肥料濃度建議值。 水苔在復水後,因為遲滯現象需等待平衡,且平衡期間測值不精準。故試驗目的為觀察要排除遲滯現象影響測值所需等待之平衡時間。當水苔復水後 VWC越低,平衡期間 ECp值的變化越大,且平衡後的 ECp值與初期乾燥過程的測值差距越大,提高復水程度則可減少 ECp值復水前後差異。遲滯現象對水苔 VWC變化影響皆小於 0.041 m3∙m-3,可以被忽略,而復水至 0.4 m3∙m-3以上,平衡 2至 3天後與平衡最後一天的 ECp測值誤差低於 0.1 dS∙m-1。考量監測時效,建議澆灌液肥 1至 3天後以 WET sensor監測水苔 ECp。 以上述結果建立之模型,計算建議施肥濃度,在蝴蝶蘭植株上進行四次施肥之澆灌,共經過 5個月的栽培過程,在修正 VWC於澆灌後的上升幅度後,即可使建議的施肥達到目標的水苔養分狀態 (ECp (θ= cc))。利用模型與 ECp (θ= cc)疊加公式計算施用的肥料 EC值,能達到目標水苔鹽類含量 ( ECp (θ= cc) 值 1.0 dS∙m-1)。顯示精準得知施肥後水苔 VWC上升幅度,便可利用 ECp (θ= cc)計算模型與 ECp (θ= cc)施肥後上升公式,計算施用的肥料 EC值,使栽培蝴蝶蘭時澆灌適當 EC值液肥,水苔鹽類含量達到目標區間。 綜合試驗結果,以 WET量測儀監測水苔可精準呈現 VWC與 ECp值變化關係,並以此建立 VWC- ECp- ECp (θ= cc)迴歸模型,能計算出水苔 ECp (θ= cc)值,協助業者參照 PT法肥培建議判斷水苔養分狀態。ECp (θ= cc)計算模型搭配 ECp (θ= cc)施肥後上升公式,可協助計算施肥的 EC值濃度以達到預計的水苔鹽類含量。澆灌後 1至 3天後檢測澆灌EC並修正施肥操作,有利於蝴蝶蘭栽培時精準控肥。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:30Z (GMT). No. of bitstreams: 1
U0001-0809202117175700.pdf: 9098262 bytes, checksum: 6a47bf18159eea0e9de5805ffa42ab09 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 I 表目錄 II 圖目錄 II 前言 1 前人研究 3 一、介質溶液鹽度對園藝栽培之影響 3 二、介質溶液鹽度對蝴蝶蘭之影響 5 三、以pour-through法建立之水苔肥培管理方式 6 四、介質水分測量方式 8 五、介電感測器 9 六、影響量測介質數據的因素 11 七、遲滯現象 12 八、研究動機 13 材料與方法 15 一、試驗材料 15 二、試驗設計 15 三、調查項目 20 結果 22 一、VWC、ECp與總鹽類含量間之關係 22 二、施肥對 ECp (θ= cc)之影響 24 三、水苔復水過程遲滯現象對於 ECp之影響 27 四、應用模型進行蝴蝶蘭栽培管理 29 討論 72 一、水苔 VWC、ECp與 ECp (θ= cc)之關係 72 二、水苔體積變化對 ECp準確性之影響 75 三、施肥對水苔 ECp與 ECp (θ= cc)之影響 77 四、施肥對水苔 VWC計算參數之影響 78 五、介質遲滯對於水苔ECp準確性之影響 79 六、水苔不同程度復水與介質遲滯之關係 80 七、復水水苔後建議等待介質平衡之時間 81 八、應用模型進行蝴蝶蘭栽培管理 82 結論 86 參考文獻 88 附錄 92
dc.language.isozh-TW
dc.subjectWET量測儀zh_TW
dc.subject水苔zh_TW
dc.subject介質溶液電導度zh_TW
dc.subject介質含水量zh_TW
dc.subject蝴蝶蘭zh_TW
dc.subjectmedium water contenten
dc.subjectsphagnum mossen
dc.subjectWET sensoren
dc.subjectpore water electrical conductivityen
dc.subjectPhalaenopsisen
dc.title利用插入式水分電導度量測儀建立蝴蝶蘭栽培水苔肥培管理模式zh_TW
dc.titleEstablishing Fertilization Model of Sphagnum Moss by Plug-in Water-EC Meter in Phalaenopsis Cultivationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許正一(Hsin-Tsai Liu),李達源(Chih-Yang Tseng)
dc.subject.keyword蝴蝶蘭,介質溶液電導度,介質含水量,WET量測儀,水苔,zh_TW
dc.subject.keywordPhalaenopsis,pore water electrical conductivity,medium water content,WET sensor,sphagnum moss,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202103064
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2026-09-06-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-0809202117175700.pdf
  未授權公開取用
8.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved