Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81937
標題: 偵測錯誤健康新聞的階層式圖注意力網路
Hierarchical Graph Attention Network for Fake Health News Detection
作者: Pei-Wen Sun
孫珮文
指導教授: 王志宇(Chih-Yu Wang)
共同指導教授: 謝宏昀(Hung-Yun Hsieh)
關鍵字: 健康新聞,假新聞偵測,社群網路,圖形神經網路,注意力機制,
Health News,Fake News Detection,Social Networks,Graph Neural Networks,Attention Mechanism,
出版年 : 2022
學位: 碩士
摘要: 隨著社群平台的興起,大量錯誤的醫療健康新聞流傳於網際網路上,當人們採取健康假訊息建議的偏方後,他們的生命可能會受到威脅。為了避免假新聞造成的負面影響,許多偵測的方法已被提出,例如,自然語言處理技術(NLP)能夠根據新聞的文字來判斷其真實性,然而由於當今人們時常從社群媒體接收新聞資訊,用戶的背景以及其對新聞的參與模式或許有助於假新聞的偵測,因此,研究學者引入圖神經網路(GNN)到此任務上。通常在一個社群網路中,每個節點對他相鄰的節點有不同的影響力,每種關係也有獨特的意義,有鑑於此,我們提出一個新穎、以階層式注意力機制為基礎的圖學習框架,以捕抓重要的節點和交互作用。另外,因為圖神經網路在多層堆疊時表現不佳,我們設計了兩階段的訓練策略,以縮短傳遞用戶交友圈之訊息到新聞節點的路徑。在辨別健康假新聞的任務上,實驗結果顯示我們的模型優於現有的方法,並且基於注意力機制的圖神經網路能受益於兩階段的訓練。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81937
DOI: 10.6342/NTU202200334
全文授權: 同意授權(全球公開)
電子全文公開日期: 2024-02-08
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-0702202216280100.pdf5.78 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved