Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王志宇(Chih-Yu Wang)
dc.contributor.authorPei-Wen Sunen
dc.contributor.author孫珮文zh_TW
dc.date.accessioned2022-11-25T03:07:00Z-
dc.date.available2024-02-08
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-10
dc.identifier.citation[1] Hundreds dead because of covid­-19 misinformation, 2020. URL https://www. bbc.com/news/world-53755067. [2] Robocalls, rumors and emails: Last­-minute election disinformation floods voters, 2020. URL https://n.pr/3fcMsyi. [3] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In International Conference on Learning Representations, 2021. [4] Shantanu Chandra, Pushkar Mishra, Helen Yannakoudakis, Madhav Nimishakavi, Marzieh Saeidi, and Ekaterina Shutova. Graph-­based modeling of online communities for fake news detection. arXiv preprint arXiv:2008.06274, 2020. [5] Chih­-Chung Chang and Chih-­Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011. [6] Jian Cui, Kwanwoo Kim, Seung Ho Na, and Seungwon Shin. Hetero-­scan: Towards social context aware fake news detection via heterogeneous graph neural network. arXiv preprint arXiv:2109.08022, 2021. [7] Enyan Dai, Yiwei Sun, and Suhang Wang. Ginger cannot cure cancer: Battling fake health news with a comprehensive data repository. In Proceedings of the International AAAI Conference on Web and Social Media, volume 14, pages 853– 862, 2020. [8] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pages 2331–2341, 2020. [9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In International Conference on Machine Learning, pages 1263–1272, 2017. [10] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pages 1025–1035, 2017. [11] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings of The Web Conference 2020, pages 2704–2710, 2020. [12] Thomas N Kipf and Max Welling. Semi­-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, 2017. [13] Valeria Mazzeo, Andrea Rapisarda, and Giovanni Giuffrida. Detection of fake news on covid­-19 on web search engines. Frontiers in Physics, pages 14–14, 2021. [14] Dat Quoc Nguyen, Thanh Vu, and Anh­-Tuan Nguyen. Bertweet: A pre-­trained language model for english tweets. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 9–14, 2020. [15] Van-­Hoang Nguyen, Kazunari Sugiyama, Preslav Nakov, and Min­-Yen Kan. Fang: Leveraging social context for fake news detection using graph representation. In Proceedings of the 29th ACM International Conference on Information Knowledge Management, pages 1165–1174, 2020. [16] Verónica Pérez­-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Automatic detection of fake news. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3391–3401, 2018. [17] Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. A stylometric inquiry into hyperpartisan and fake news. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 231–240, 2018. [18] Nils Reimers and Iryna Gurevych. Sentence-­bert: Sentence embeddings using siamese bert­-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, pages 671–688, 2019. [19] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In European Semantic Web Conference, pages 593–607, 2018. [20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008, 2017. [21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In International Conference on Learning Representations, 2018. [22] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A graph-­centric, highly-­performant package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019. [23] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph attention network. In The World Wide Web Conference, pages 2022–2032, 2019. [24] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao. Eann: Event adversarial neural networks for multi­-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pages 849–857, 2018. [25] Yuxiang Wang, Yongheng Zhang, Xuebo Li, and Xinyao Yu. Covid­-19 fake news detection using bidirectional encoder representations from transformers based models. arXiv preprint arXiv:2109.14816, 2021. [26] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State­-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, 2020. [27] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences. Advances in Neural Information Processing Systems, 33, 2020. [28] Xinyi Zhou, Jindi Wu, and Reza Zafarani. Safe: Similarity-­aware multi­-modal fake news detection. In 24th Pacific­-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2020, pages 354–367, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81937-
dc.description.abstract隨著社群平台的興起,大量錯誤的醫療健康新聞流傳於網際網路上,當人們採取健康假訊息建議的偏方後,他們的生命可能會受到威脅。為了避免假新聞造成的負面影響,許多偵測的方法已被提出,例如,自然語言處理技術(NLP)能夠根據新聞的文字來判斷其真實性,然而由於當今人們時常從社群媒體接收新聞資訊,用戶的背景以及其對新聞的參與模式或許有助於假新聞的偵測,因此,研究學者引入圖神經網路(GNN)到此任務上。通常在一個社群網路中,每個節點對他相鄰的節點有不同的影響力,每種關係也有獨特的意義,有鑑於此,我們提出一個新穎、以階層式注意力機制為基礎的圖學習框架,以捕抓重要的節點和交互作用。另外,因為圖神經網路在多層堆疊時表現不佳,我們設計了兩階段的訓練策略,以縮短傳遞用戶交友圈之訊息到新聞節點的路徑。在辨別健康假新聞的任務上,實驗結果顯示我們的模型優於現有的方法,並且基於注意力機制的圖神經網路能受益於兩階段的訓練。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:07:00Z (GMT). No. of bitstreams: 1
U0001-0702202216280100.pdf: 5917098 bytes, checksum: d1059d1cf71a9a135b7e67cd13c1c24d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Contents vi List of Figures ix List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 3 1.3 Organization of Thesis 3 Chapter 2 Preliminary and Related Work 4 2.1 Preliminary 4 2.1.1 Heterogeneous Graph 4 2.1.2 Graph Neural Network 5 2.2 Related Work 5 2.2.1 Graph Neural Networks 5 2.2.2 Heterogeneous GNNs 6 2.2.3 Fake News Detection Methods 6 2.2.3.1 Text-­based Approach 6 2.2.3.2 Graph­-based Approach 7 2.2.3.3 Summary 7 Chapter 3 Dataset and Feature Engineering 8 3.1 Dataset 8 3.1.1 Overview of Dataset 8 3.1.2 Dataset Refinement 9 3.1.2.1 News 9 3.1.2.2 Tweets 10 3.2 Feature Engineering 10 3.2.1 Feature Processing 11 3.2.1.1 Text 11 3.2.1.2 Date and time 11 3.2.1.3 Category 12 3.2.1.4 Number 12 3.2.2 Feature Selection 13 3.2.2.1 Date and time 13 3.2.2.2 Category 13 3.2.2.3 Number 14 3.2.2.4 Summary 17 Chapter 4 Methodology 18 4.1 Graph Construction 18 4.2 Problem Definition 19 4.3 Model Architecture 19 4.3.1 Node Feature Transformation 20 4.3.2 Node-­level Attention 21 4.3.3 Relation-­level Attention 23 4.4 Two­-stage Training 24 4.4.1 Motivation 24 4.4.2 Process of Two-­stage Training 25 4.5 Loss Function 26 Chapter 5 Evaluation 27 5.1 Experimental Setup 27 5.1.1 Baselines 27 5.1.2 Dataset Splits and Evaluation Metrics 28 5.1.3 Implementation Details 29 5.2 Results 29 5.2.1 Fake Health News Detection 29 5.2.2 Two-­stage Training 30 5.2.3 Ablation Study 31 Chapter 6 Conclusion and Future Work 33 6.1 Conclusion 33 6.2 Future Work 34 References 35
dc.language.isoen
dc.subject圖形神經網路zh_TW
dc.subject社群網路zh_TW
dc.subject健康新聞zh_TW
dc.subject注意力機制zh_TW
dc.subject假新聞偵測zh_TW
dc.subjectAttention Mechanismen
dc.subjectHealth Newsen
dc.subjectFake News Detectionen
dc.subjectSocial Networksen
dc.subjectGraph Neural Networksen
dc.title偵測錯誤健康新聞的階層式圖注意力網路zh_TW
dc.titleHierarchical Graph Attention Network for Fake Health News Detectionen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.coadvisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.oralexamcommittee王釧茹(Ching-Yu Chen),蘇黎(Hsiu-Jung Chen),(Yihru Cheng)
dc.subject.keyword健康新聞,假新聞偵測,社群網路,圖形神經網路,注意力機制,zh_TW
dc.subject.keywordHealth News,Fake News Detection,Social Networks,Graph Neural Networks,Attention Mechanism,en
dc.relation.page39
dc.identifier.doi10.6342/NTU202200334
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2024-02-08-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-0702202216280100.pdf5.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved