請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡哲明(Jer-Ming Hu) | |
| dc.contributor.author | Chen-Jui Yang | en |
| dc.contributor.author | 楊承瑞 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:16Z | - |
| dc.date.available | 2023-02-01 | |
| dc.date.copyright | 2022-02-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-11 | |
| dc.identifier.citation | Adanson M. (1763a) Katoutheka Adans. Fam Pl (Adanson) 2:159. Adanson M. (1763b) Vedela Adans. Fam Pl (Adanson) 2:502. Al-Abd NM, Nor ZM, Mansor M, Zajmi A, Hasan MS, Azhar F, Kassim M. (2017) Phytochemical constituents, antioxidant and antibacterial activities of methanolic extract of Ardisia elliptica. Asian Pac J Trop Biomed 7(6):569–76. doi: 10.1016/j.apjtb.2017.05.010 Anderberg AA, Ståhl B, Källersjö M. (2000) Maesaceae, a new primuloid family in the order Ericales s.l. Taxon 49(2):183–7. doi: 10.2307/1223834 Anderberg AA, Manns U, Källersjö M. (2007) Phylogeny and floral evolution of the Lysimachieae (Ericales, Myrsinaceae): evidence from ndhF sequence data. Willdenowia 37(2):407–21. doi: 10.2307/20371369 Appelhans MS, Paetzold C, Wood KR, Wagner WL. (2020) RADseq resolves the phylogeny of Hawaiian Myrsine (Primulaceae) and provides evidence for hybridization. J Syst Evol 58(6):823-840. doi: 10.1111/jse.12668 Aublet JBCF. (1775) Icacorea Aubl. Hist Pl Guiane 2(Suppl.):1, t.368. Beier S, Thiel T, Münch T, Scholz U, and Mascher M. (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583–5. doi: 10.1093/bioinformatics/btx198 Bone RE, Strijk JS, Fritsch PW, Buerki S, Strasberg D, Thébaud C, Hodkinson TR. (2012) Phylogenetic inference of Badula (Primulaceae), a rare and threatened genus endemic to the Mascarene Archipelago. Bot J Linn Soc 169(2):284-96. doi: 10.1111/j.1095-8339.2012.01221.x Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S. (2003) Global alignment: finding rearrangements during alignment. Bioinformatics 19(S1):i54–62. doi: 10.1093/bioinformatics/btg1005 de Candolle A. (1841) Second mémoire sur la famille des Myrsinéacées. Ann Sci Nat, Bot sér 2. 16:65–97. de Candolle A (1834). A review of the natural order Myrsineæ. Trans Linn Soc Lond 17:95–138. Carlier AL, Eberl L. (2012) The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environ Microbiol 14(10):2757–69. doi: 10.1111/j.1462-2920.2012.02763.x Carlier A, Fehr L, Pinto-Carbó M, Schäberle T, Reher R, Dessein S, König G, Eberl L. (2016) The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ Microbiol 18(8):2507–22. doi: 10.1111/1462-2920.13184 Chan PP, Lin BY, Mak AJ, Lowe TM. (2021) tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 49(16):9077–96. doi: 10.1093/nar/gkab688 Charleston MA. (2011) TreeMap 3b. [software]. [cited 2021 Aug 25]. Available from: http://sites.google.com/site/cophylogeny/ Chen J, Pipoly JJ. (1996) Myrsinaceae. In: Wu ZY, Raven PH. editors. Flora of China, 15 Myrsinaceae. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press; p. 1–38. Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R. (2010) Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol Biol 5(1):16. doi: 10.1186/1748-7188-5-16 Coode MJE. (1981) Myrsinacées. In: Bosser J, Cadet T, Guého J, Marais W, editors. Flore des Mascareignes. 115. Paris: Royal Botanic Gardens (Kew); p. 1–25. Crüsemann M, Reher R, Schamari I, Brachmann AO, Ohbayashi T, Kuschak M, Malfacini D, Seidinger A, Pinto-Carbó M, Richarz R, Reuter T, Kehraus S, Hallab A, Attwood M, Schiöth HB, Mergaert P, Kikuchi Y, Schäberle TF, Kostenis E, Wenzel D, Müller CE, Piel J, Carlier A, Eberl L, König GM. (2018) Heterologous expression, biosynthetic studies, and ecological function of the selective Gq-signaling inhibitor FR900359. Angew Chem Int Ed 57(3):836–40. doi: 10.1002/anie.201707996 Darriba D, Taboada GL, Doallo R, Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. doi: 10.1038/nmeth.2109 de Mejía EG, Ramírez-Mares MV. (2011) Ardisia: health-promoting properties and toxicity of phytochemicals and extracts. Toxicol Mech Methods 21(9):667–74. doi: 10.3109/15376516.2011.601355 de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. (2013) Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198(2):347–85. doi: 10.1111/nph.12150 de Wit HCD. (1957) Some remarks on Heberdenia A. DC., Pleiomeris A. DC., and Afrardisia Mez (Myrs.). Bull Jard Bot Etat Brux 27(2):233–42. doi: 10.2307/3666960 Ding HB, Yang B, Zhou SS, Maw MB, Maung KW, Tan YH. (2019) New contributions to the flora of Myanmar I. Plant Divers 41(3):135–52. doi: 10.1016/j.pld.2019.05.002 Doyle JJ, Doyle JL. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–5. Escudero M. (2015) Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): cospeciation or host-shift speciation? Am J Bot 102(7):1108–14. doi: 10.3732/ajb.1500130 Faeth SH. (2002) Are endophytic fungi defensive plant mutualists? Oikos. 98(1):25–36. Feliner GF, Rosselló JA. (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44(2):911–9. doi: 10.1016/j.ympev.2007.01.013 Flores-García A, Márquez-Meléndez R, Salas E, Ayala-Soto G, Salmerón I, Hernández-Ochoa L. (2019) Physicochemical and sensory characteristics of a chagalapoli fruit (Ardisia compressa) beverage fermented using Saccharomyces cerevisiae. Int J Food Sci 2019:9687281. doi: 10.1155/2019/9687281 Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(S2):W273–9. doi: 10.1093/nar/gkh458 Fujioka M, Koda S, Morimoto Y, Biemann K. (1988) Structure of FR900359, a cyclic depsipeptide from Ardisia crenata sims. J Org Chem 53(12):2820–5. Giri GS, Das SK, Chowdhery HJ. (2002) A new species of Amblyanthus A. DC., family Myrsinaceae, from Arunachal Pradesh, India. J Bombay Nat Hist Soc 99:471–3. Gordon JF. (1963) The nature and distribution within the plant of the bacteria associated with certain leaf-nodulated species of the families Myrsinaceae and Rubiaceae: University London. PhD dissertation. Hafner MS, Demastes JW, Spradling TA, Reed DL. (2003) Cophylogeny between pocket gophers and chewing lice. In: Page RDM, editor. Tangled trees: phylogeny, cospeciation, and coevolution. USA: University of Chicago Press; p. 195–220. Hall TA. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–8. Hao G, Yuan YM, Hu CM, Ge XJ, Zhao NX. (2004) Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences. Mol Phylogenet Evol 31(1):323–39. doi: 10.1016/S1055-7903(03)00286-0 Hong KY, Jhuang PH, Tsai CC, Hong CH, Wu HH. (2009) Precocious germination in Ardisia japonica (Myrsinaceae). J Exp For Natl Taiwan Univ 23(4):329–35. Hou N, Li M, Shen J, Chen Z, Luo Y, Deng L. (2019) The complete chloroplast genome of Ardisia mamillata (Myrsinaceae). Mitochondrial DNA Part B 4(2):3441–2. doi: 10.1080/23802359.2019.1673680 Hu CM. (1999) New synonyms and combinations in Asiatic Ardisia (Myrsinaceae). Blumea 44(2):391–406. Hu CM, Deng YF. (2012) Sadiria aberrans, a new combination in Chinese Myrsinaceae. Ann Bot Fenn 49(5):395–6. doi: 10.5735/085.049.0613 Hu CM, Vidal JE. (2004) Myrsinaceae. In: P M, editor. Flore du Cambodge, du Laos et du Vietnam. Paris: Museum National d'Histoire Naturelle; p. 1–228. Huang GH, Hao G, Hu CM. (2017) Hymenandra A. DC. (Primulaceae), a new generic record for China. J Trop Subtrop Botany 25(3):282–4. doi: 10.11926/jtsb.3682 Hughes CE, Eastwood RJ, Donovan BC. (2006) From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Phil Trans R Soc B 361(1465):211–25. doi: 10.1098/rstb.2005.1735 Jackes BR. (2005) Studies in Australian Myrsinaceae: Tapeinosperma Hook.f. Austrobaileya 7(1):99–110. Jeon JH, Kim SC. (2019) Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes 10(1):23. doi: 10.3390/genes10010023 Jin JJ., Yu WB., Yang JB., Song Y, dePamphilis CW, Yi TS, Li DZ. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21:241 doi: 10.1186/s13059-020-02154-5 Joaquín-Cruz E, Dueñas M, García-Cruz L, Salinas-Moreno Y, Santos-Buelga C, García-Salinas C. (2015) Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Res Int 70:151–7. doi: 10.1016/j.foodres.2015.01.033 Jongh PD. (1938) On the symbiosis of Ardisia crispa (Thunb.) A. DC. Amsterdam: Noord-Hollandsche Uitgevers-Maatschappij. PhD dissertation. Jousselin E, Desdevises Y, Coeur d'acier A. (2009) Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc Biol Sci 276(1654):187–96. doi: 10.1098/rspb.2008.0679 Julius A, Gutiérrez-Ortega JS, Sabran S, Tagane S, Naiki A, Darnaedi D, Aung M, Dang S, Nguyen N, Binh H, Watano Y, Utteridge T, Kajita T. (2021) Phylogenetic relationship of tropical Asian Ardisia and relatives (Primulaceae) shows non-monophyly of recognized genera and subgenera. J Jpn Bot 93:149–65. Julius A, Utteridge T. (2012) Revision of Ardisia subgenus Bladhia in Peninsular Malaysia; studies in Malaysian Myrsinaceae I. Kew Bull 67(3):379–88. doi: 10.1007/s12225-012-9374-4 Jung J, Kim C, Kim JH. (2021) Insights into phylogenetic relationships and genome evolution of subfamily Commelinoideae (Commelinaceae Mirb.) inferred from complete chloroplast genomes. BMC Genomics 22:231. doi: 10.1186/s12864-021-07541-1 Källersjö M, Bergqvist G, Anderberg AA. (2000) Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am J Bot 87(9):1325–41. doi: 10.2307/2656725 Katoh K, Rozewicki J, Yamada KD. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20(4):1160–6. doi: 10.1093/bib/bbx108 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Bio Evol 2013;30(4):772–80. doi: 10.1093/molbev/mst010 Kikuchi S, Osone Y. (2020) Subspecies divergence and pronounced phylogenetic incongruence in the East-Asia-endemic shrub Magnolia sieboldii. Ann Bot 127(1):75–90. doi: 10.1093/aob/mcaa174 Kim KJ, Jansen RK. (1995) ndhF sequence evolution and the major clades in the sunflower family. P Natl Acad Sci USA 92(22):10379–83. doi: 10.1073/pnas.92.22.10379 King G, Gamble JS. (1905) Myrsinaceae. J R Asiat Soc Bengal Part 2 Nat Hist 74:93–157. Kishino H, Hasegawa M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29(2):170–9. doi: 10.1007/BF02100115 Kitajima K., Fox AM, Sato T, Nagamatsu D. (2006) Cultivar selection prior to introduction may increase invasiveness: evidence from Ardisia crenata. Biol Invasions 8:1471–82. doi: 10.1007/s10530-005-5839-9 Kobayashi H, de Mejía E. (2005) The genus Ardisia: a novel source of health-promoting compounds and phytopharmaceuticals. J Ethnopharmacol 96(3):347–54. doi: 10.1016/j.jep.2004.09.037 Kokubugata G, Suzuki Y, Yokota M. (2019) Molecular evidence for hybridization events involved in the origin of Ardisia walkeri (Primulaceae) revealed by nuclear and chloroplast DNA sequence data. Bull Natl Sci Mus Ser B Bot 45(1):9–15. Ku C, Hu JM. (2014) Phylogenetic and cophylogenetic analyses of the leaf-nodule symbiosis in Ardisia subgenus Crispardisia (Myrsinaceae): evidence from nuclear and chloroplast markers and bacterial rrn operons. Int J Plant Sci 175(1):92–109. doi: 10.1086/673306 Ku C, Hu JM, Kuo CH. (2013) Complete plastid genome sequence of the basal Asterid Ardisia polysticta Miq. and comparative analyses of Asterid plastid genomes. PLoS ONE 8(4):e62548. doi: 10.1371/journal.pone.0062548 Hu J, Liu S, Cheng Q, Pu S, Mao M, Mu Y, Dan F, Yang J, Ma M. (2020) Novel method for improving ardicrenin content in hairy roots of Ardisia crenata Sims plants. J. Biotechnol 311:12–18. doi: 10.1016/j.jbiotec.2020.02.009 Jongh PD. (1938) On the symbiosis of Ardisia crispa (Thunb.) A. DC. Amsterdam: Noord-Hollandsche Uitgevers-Maatschappij. PhD dissertation. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–42. doi: 10.1093/nar/29.22.4633 Larsen K, Hu CM. (1991) New taxa of Myrsinaceae from Thailand. Nord J Bot 11(1):61–78. doi: 10.1111/j.1756-1051.1991.tb01795.x Larsen K, Hu CM. (1995) Reduction of Tetrardisia to Ardisia. Nord J Bot 15(2):161–2. doi: 10.1111/j.1756-1051.1995.tb00134.x Lemaire B, Vandamme P, Merckx V, Smets E, Dessein S. (2011) Bacterial leaf symbiosis in angiosperms: host specificity without co-speciation. PLoS ONE 6(9):e24430. doi: 10.1371/journal.pone.0024430 Lersten NR, Horner HT. (1976) Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot Rev 42(2):145–214. Lersten NR. (1977) Trichome forms in Ardisia (Myrsinaceae) in relation to the bacterial leaf nodule symbiosis. Bot J Linn Soc. 75(3):229–44. doi: 10.1111/j.1095-8339.1977.tb01486.x Li X, Yang Y, Henry RH, Rossetto M, Wang Y, Chen S. (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–66. doi: 10.1111/brv.12104 Lim YW, Baik KS, Han SK, Kim SB, Bae KS. (2003) Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int J Syst Evol Microbiol 53(5):1631–6. doi: 10.1099/ijs.0.02456-0 Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW, Yamaoka Y, Graham DY, Perez-Trallero E, Wadstrom T, Suerbaum S, Achtman M. (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445(7130):915–8. doi: 10.1038/nature05562 Liu G, Ning H, Ayidaerhan N, Aisa H. (2017) Evaluation of DNA barcode candidates for the discrimination of Artemisia L. Mitochondr DNA A 28(6):956–64. doi: 10.1080/24701394.2016.1219729 Liu K, Wang R, Guo XX, Zhang XJ, Qu XJ, Fan SJ. (2021) Comparative and phylogenetic analysis of complete chloroplast genomes in Eragrostideae (Chloridoideae, Poaceae). Plants 10:109. doi: 10.3390/plants10010109 Liu L, Wang Y, He P, Li P, Lee J Soltis DE, Fu C. (2018) Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics 19:235. doi: 10.1186/s12864-018-4633-x Lo EYY, Donoghue MJ. (2012) Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol Phylogenet Evol 63:230–43. doi: 10.1016/j.ympev.2011.10.005 Lundell CL. (1963) Studies of the American Myrsinaceae - I. Wrightia 3(5):77–90. Lundell CL. (1964) Studies of the American Myrsinaceae - II. Wrightia 3(6):97–114. Lundell CL. (1966) Myrsinaceae. In: Standley PC, Williams LO, editors. Flora of Guatemala. Fieldiana. Bot.; Volume 24, Part 8, Number 1. Chicago: Chicago Natural History Museum; p. 135–200. Lundell CL. (1971) Flora of Panama, Part VIII. Family 150. Myrsinaceae. Ann Mo Bot Gard 58:285–353. Lundell CL. (1981) Neotropical Myrsinaceae - IV. Phytologia 48(2):137–42. Lundell CL. (1982) Neotropical Myrsinaceae - VII. Phytologia 7(2):38–50. Lundell CL. (1983) Neotropical Myrsinaceae - VIII. Phytologia 7(3):245–50, 254–5. Machado SR, Teixeira SdP, Rodrigues TM. (2014) Bacterial leaf glands in Styrax camporum (Styracaceae): first report for the family. Botany. 92(5):403-11. doi: 10.1139/cjb-2013-0297 Maddison WP, Knowles LL. (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55(1):21–30. doi: 10.1080/10635150500354928 Mann Whitney U test calculator. [Internet]. Statistics Kingdom; c2017– [cited 2021 Aug 25]. Available from: http://www.statskingdom.com/170median_mann_whitney.html/ Manns U, Anderberg AA. (2005) Molecular phylogeny of Anagallis (Myrsinaceae) based on ITS, trnL‐F, and ndhF sequence data. Int J Plant Sci 166(6):1019–28. doi: 10.1086/449318 Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. (2000) VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–7. doi: 10.1093/bioinformatics/16.11.1046 Mez C. (1902) Myrsinaceae. In: Engler A, editor. Das Pflanzenreich, Heft 9, IV. Fam. 236. Verlag von Wilhelm Engelmann, Leipzig; p. 1–437. Miehe H. (1919) Weitere Untersuchungen über die Bakteriensymbiose bei Ardisia crispa. II. Die Pflanze ohne Bakterien Jahrbücher für wissenschaftliche Botanik. 58:29–65. Miller IM, Donnelly AE. (1987) Location and distribution of symbiotic bacteria during floral development in Ardisia crispa. Plant Cell Environ. 10(9):715–24. doi: 10.1111/1365-3040.ep11604753 Miller IM. (1990) Bacterial leaf nodule symbiosis. Adv Bot Res 17:163–234. doi: 10.1016/S0065-2296(08)60134-2 Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE); p. 1–8. doi: 10.1109/GCE.2010.5676129 Miyamae A, Fujioka M, Koda S, Morimoto Y. (1989) Structural studies of FR900359, a novel cyclic depsipeptide from Ardisia crenata Sims (Myrsinaceae). J Chem Soc, Perkin Trans 1 1989(5):873–8. doi: 10.1039/P19890000873 Moerman DE. (2010) Native American food plants: An ethnobotanical dictionary. Portland: Timber Press. p. 54. Muñoz MC, Ackerman JD. (2011) Spatial distribution and performance of native and invasive Ardisia (Myrsinaceae) species in Puerto Rico: the anatomy of an invasion. Biol Invasions 13:1543–58. doi: 10.1007/s10530-010-9912-7 Nakahashi CD, Frole K, Sack L. (2005) Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol 7(5):495–500. doi: 10.1055/s-2005-865853 Nayar MP, Giri GS. (1974) Taxonomic studies on Myrsinaceae of India-I. a new species and review of genus Sadiria Mez. Bull Bot Surv India 16(1-4):144–7. doi: 10.20324/nelumbo/v16/1974/75041 Neal JJW, Davis JC, Bentz JA, Warthen JDJ, Griesbach RJ, Santamour JFS. (1998) Allelochemical activity in Ardisia species (Myrsinaceae) against selected arthropods. J Econ Entomol 91(3):608–17. doi: 10.1093/jee/91.3.608 Newell AMB, Yousef GG, Lila MA, Ramírez-Mares MV, Gonzalez de Mejia E. (2010) Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J Ethnopharmacol 130(3):536–44. doi: 10.1016/j.jep.2010.05.051 Niu HY, Hong L, Wang ZF. Shen H, Ye WH, Mu HP, Cao HL, Wang ZM, Bradshaw CJ. (2012) Inferring the invasion history of coral berry Ardisia crenata from China to the USA using molecular markers. Ecol Res 27:809–18. doi: 10.1007/s11284-012-0957-1 Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, Eberl L, Carlier A. (2016) Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME J 10:2092–105. doi: 10.1038/ismej.2016.27 Pipoly JJ. (1991) Systematic studies in the genus Myrsine L. (Myrsinaceae) in Guayana. Novon 1(4):204–10. doi: 10.2307/3391622 Pipoly JJ. (1992a) A further note on Myrsine perpauciflora Pipoly (Myrsinaceae). Novon 2(2):176. doi: 10.2307/3391683 Pipoly JJ. (1992b) Estudios en el género Myrsine (Myrsinaceae) de Colombia. Caldasia 17(1):3–9. Pipoly JJ. (1996) Contributions toward a new flora of the Philippines: I. a synopsis of the genus Myrsine (Myrsinaceae). SIDA, Contrib Bot 17(1):115–62. Pipoly JJ, Chen C. (1995) Nomenclatural notes on the Myrsinaceae of China. Novon 5(4):357–61. doi: 10.2307/3391964 Pipoly JJ, Ricketson JM. (1998) A revision of the genus Ardisia subgenus Graphardisia (Myrsinaceae). SIDA, Contrib Bot 18(2):433–72. Pipoly JJ, Ricketson JM. (1999) Discovery of the Indo-Malesian genus Hymenandra (Myrsinaceae) in the neotropics, and its Boreotropical implications. SIDA, Contrib Bot 18(3):701–46. Pipoly JJ, Ricketson JM. (2000) Discovery of Ardisia subgenus Acrardisia (Myrsinaceae) in Mesoamerica: another Boreotropical element? SIDA, Contrib Bot 19(2):275–83. POWO. (2021) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org. Accessed 7 Dec 2021. Reher R, Kuschak M, Heycke N, Annala S, Kehraus S, Dai HF, Müller CE, Kostenis E, König GM, Crüsemann M. (2018) Applying molecular networking for the detection of natural sources and analogues of the selective Gq protein inhibitor FR900359. J Nat Prod 81(7):1628–35. doi: 10.1021/acs.jnatprod.8b00222 Ricketson JM, Pipoly JJ. (1997) A synopsis of the genus Gentlea (Myrsinaceae) and a key to the genera of Myrsinaceae in Mesoamerica. SIDA, Contrib Bot 17(4):697–707. Ricketson JM, Pipoly JJ. (2003) Revision of Ardisia subgenus Auriculardisia (Myrsinaceae). Ann Mo Bot Gard 90(2):179–317. doi: 10.2307/3298582 Rieseberg L, Soltis D. (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trend Plant 5:65–84. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–42. doi: 10.1093/sysbio/sys029 Roderick G, editor (1997) Herbivorous insects and the Hawaiian silversword alliance: coevolution or cospeciation? Pac Sci 51(4): 440–9. Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ. (2018) Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Mol Phylogenet Evol 122:59–79. doi: 10.1016/j.ympev.2018.01.014 Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34(12):3299–302. doi: 10.1093/molbev/msx248 Sang T, Crawford DJ, Stuessy TF. (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84(8):1120–36. doi: 10.2307/2446155 Sequencher version 5.2.4 (2014) DNA sequence analysis software. [software] Gene Codes Corporation, Ann Arbor. [cited 2021 Aug 25]. Available from: http://www.genecodes.com Shi C, Liu Y, Huang H, Xia EH, Zhang HB, Gao LZ. (2013) Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms. PLoS ONE 8(3):e59620. doi: 10.1371/journal.pone.0059620 Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(W1):W65–73. doi: 10.1093/nar/gkz345 Shimodaira H, Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16(8):1114. doi: 10.1093/oxfordjournals.molbev.a026201 Sleumer H. (1988a) A revision of the genus Ardisia Sw. (Myrsinaceae) in New Guinea. Blumea 33(1):115–40. Sleumer H. (1988b) The genera Discocalyx Mez, Fittingia Mez, Loheria Merr. and Tapeinosperma Hook. f. (Myrsinaceae) in New Guinea. Blumea 33:81–107. Smith AC. (1973) Studies of pacific island plants, xxv. The Myrsinaceae of the Fijuan region. J Arnold Arboretum 54(2):228–92. Spach É. (1840) Les Ardisiacées. -Ardisiaceae. Hist Nat Veg (Phan.) 9:374. Ståhl B. (1996) The relationships of Heberdenia bahamensis and H. penduliflora (Myrsinaceae). Bot J Linn Soc 122(4):315–33. doi: 10.1111/j.1095-8339.1996.tb02079.x Ståhl B, Anderberg AA. (2004) Myrsinaceae. In: Kubitzki K, editor. Flowering Plants: Dicotyledons. The Families and Genera of Vascular Plants. 6. Berlin Heidelberg: Springer; p. 266–81. Stamatakis A.(2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–90. doi: 10.1093/bioinformatics/btl446 Stevens PF. (2001 onwards) Angiosperm Phylogeny Website. Version 14, July 2017–. [cited 2022 Jan 18]. Available from: http://www.mobot.org/MOBOT/research/APweb/ Stone BC. (1989) New and noteworthy Malesian Myrsinaceae, III. on the genus Ardisia Sw. in Borneo. Proc Acad Nat Sci Phila 141:263–306. Stone BC. (1990) Studies in Malesian Myrsinaceae, V. additional new species of Ardisia Sw. Proc Acad Nat Sci Phila 142:21–58. Stone BC. (1991) New and noteworthy Malesian Myrsinaceae. VI. Revision of the genus Hymenandra A. DC. Gard Bull (Singapore) 43:1–17. Stone BC. (1993) New and noteworthy Malesian Myrsinaceae, VI. Scherantha, a new subgenus of Ardisia. Pac Sci 47(3):276–94. Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A. (2012) Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am J Bot 99(2):349–364. doi: 10.3732/ajb.1100335 Strijk JS, Bone RE, Thébaud C, Buerki S, Fritsch PW, Hodkinson TR, Strasberg D. (2014) Timing and tempo of evolutionary diversification in a biodiversity hotspot: Primulaceae on Indian Ocean islands. J Biogeogr 41(4): 810–22. doi: 10.1111/jbi.12259 Sundriyal M, Sundriyal RC. (2001) Wild edible plants of the Sikkim Himalaya: Nutritive values of selected species. Econ Bot 55(3):377–90. doi: 10.1007/BF02866561 Swartz O. (1788) Ardisia Swartz. Prodr Veg Ind Occ 3:48. Swofford DL. (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4. [software]. Sinauer Associates, Sunderland, Massachusetts. [cited 2021 Aug 25]. Available from: https://paup.phylosolutions.com/ . Tate JA, Simpson BB. (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28(4):723–37. doi: 10.1043/02-64.1 Taton A. (1979) Contribution à l'étude du genre Ardisia Sw. (Myrsinaceae) en Afrique tropicale. Bull Jard Bot Nat Belg 49(1/2):81–120. doi: 10.2307/3667819 The Angiosperm Phylogeny Group. (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of floering plants: APG III. Bot J Linn Soc 161(2):105–21. doi: 10.1111/j.1095-8339.2009.00996.x The Angiosperm Phylogeny Group. (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20. doi: 10.1111/boj.12385 Thiers B. [Internet] Index herbariorum: a global directory of public herbaria and associated staff: New York Botanical Garden's Virtual Herbarium. c1998– [cited 2021 Aug 25]. Available from: http://sweetgum.nybg.org/science/ih/ . Thunberg CP. (1781) Bladhia Thunb. Nov Gen Pl [Thunberg] 1:6. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. (2017) GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res 2017;45(W1):W6–11. doi: 10.1093/nar/gkx391 Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF. editors. (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017, Regnum Vegetabile 159; Shenzhen, China. Glashütten: Koeltz Botanical Books. doi: 10.12705/Code.2018 doi: 10.12705/Code.2018 Utteridge TA, Julius A, Sabran S. (2014) Ardisia silamensis, a new ultramafic species from Borneo; studies in Malaysian Myrsinaceae II. Kew Bull 69(2):1–5. doi: 10.1007/s12225-014-9510-4 Valcárcel V, Fiz-Palacios O, Wen J. (2014) The origin of the early differentiation of ivies (Hedera L.) and the radiation of the Asian Palmate group (Araliaceae). Mol Phylogenet Evol 70:492–503. doi: 10.1016/j.ympev.2013.10.016 Valcárcel V, Wen J. (2019) Chloroplast phylogenomic data support Eocene amphi‐Pacific early radiation for the Asian Palmate core Araliaceae. J Syst Evol 57(6):547–60. doi: 10.1111/jse.12522 van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, Prinsen E. (2002) Identification of the bacterial endosymbionts in leaf galls of Psychotria (Rubiaceae, angiosperms) and proposal of ‘Candidatus Burkholderia kirkii’ sp. nov. Int J Syst Evol Microbiol 52(6):2023–7. doi: 10.1099/00207713-52-6-2023 Vandamme P, De Brandt E, Houf K, Salles JF, Dirk van Elsas J, Spilker T, LiPuma JJ. (2013) Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int J Syst Evol Microbiol 63(12):4707–18. doi: 10.1099/ijs.0.048900-0 von Faber FC. (1912) Das erbliche Zusammenleben von Bakterien und tropischen Pflanzen. Jahrb Wiss Bot 51:285–375. Wang J, Xia NH. (2012) Ardisia crenata complex (Primulaceae) studies using morphological and molecular data. In: Mworia JK, editor. Botany. London: InTech; p. 163–72. doi: 10.5772/33764 Wang LY, Wang ZH, Chen L, Zhao F, Li RJ. (2018) Sadiria longistyla (Myrsinoideae, Primulaceae), a new species from Yunnan, China. Phytotaxa 345(3):5. doi: 10.11646/phytotaxa.345.3.6 Wolfe KH. (1991) Protein-coding genes in chloroplast DNA: compilation of nucleotide sequences, data base entries, and rates of molecular evolution. In: Bogorad L, Vasil IK (ed) The photosynthetic apparatus: molecular biology and operation. Academic Press, New York; p. 467–82. doi: 10.1016/B978-0-12-715010-9.50022-0 Wong, PL, Ramli, NS, Tan, CP, Azlan, A, Abas, F. (2021) Metabolomic analysis reveals the valuable bioactive compounds of Ardisia elliptica. Phytochem Anal 32:685–97. doi: 10.1002/pca.3015 Woodson RE, Schery RW, Lundell CL. (1971) Flora of Panama. Part VIII. Family 150. Myrsinaceae. Ann Mo Bot Gard 58(3):285–353. doi: 10.2307/2394724 Xie C, An W, Liu S, Huang Y, Yang Z, Lin J, Zheng X. (2021) Comparative genomic study on the complete plastomes of four officinal Ardisia species in China. Sci Rep 11:22239. doi: 10.1038/s41598-021-01561-3 Yamada T. (1954) Studies on the leaf nodules: 1. On the historical researches of the leaf nodules. Bull Fac Educ, Chiba Univ 3:77–103. Yan X, Liu T, Yuan X, Xu Y, Yan H, Hao G. (2019) Chloroplast genomes and comparative analyses among thirteen taxa within Myrsinaceae s.str. clade (Myrsinoideae, Primulaceae). Int J Mol Sci 20(18):4534. doi: 10.3390/ijms20184534 Yang CJ, Hu JM. (2018) Bacterial leaf nodule symbiosis in flowering plants. In: Rigobelo EC, editor. Symbiosis. London, United Kingdom: IntechOpen; p. 83–105. Yang CJ, Hu JM. (2022) Molecular phylogeny of Asian Ardisia (Myrsinoideae, Primulaceae) and their leaf-nodulated endosymbionts, Burkholderia s.l (Burkholderiaceae). PLoS ONE 17(1):e0261188. doi: 10.1371/journal.pone.0261188 Yang J, Chiang YC, Hsu TW, Kim SH, Pak JH, Kim SC. (2021) Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 11:1152. doi: 10.1038/s41598-020-80143-1 Yang QH, Ye WH, Wang ZM, Yin XJ. (2009) Seed germination physiology of Ardisia crenata var. bicolor. Seed Sci Technol 37(2):291–302. doi: 10.15258/sst.2009.37.2.04 Yang YP. (1989) An addendum of Ardisia cameronensis Yang (Myrsinaceae). Bull Taiwan Forest Res Inst 4(4):235. Yang YP, Dwyer JD. (1989) Taxonomy of subgenus Bladhia of Ardlsia (Myrsinaceae). Taiwania 34(2):192–298. doi: 10.6165/TAI.1989.34.192 Yesson C, Toomey NH, Culham A. (2009) Cyclamen: time, sea and speciation biogeography using a temporally calibrated phylogeny. J Biogeogr 36(7):1234–52. doi: 10.1111/j.1365-2699.2008.01971.x Zhou Q, Guo J, Ju Y, Wu M, Zeng X, Hong Z. (2015) Improving tRNAsc……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81904 | - |
| dc.description.abstract | 紫金牛屬植物(報春花科、紫金牛亞科)有超過700個被接受的物種,主要分布於熱帶和亞熱帶地區,於東南亞和美洲地區的多樣性最高。目前對於紫金牛屬的定義並不明確,且本屬植物經常和相近屬混淆。在紫金牛屬圓齒紫金牛亞屬植物中發現有和伯克氏菌形成葉瘤共生的現象,其共生菌為垂直傳遞且具高度專一性和宿主依賴性,暗示著二者可能有共同種化的演化歷史。本論文之研究重點為紫金牛屬植物之譜系分類,以及共生現象在屬內的演化關係。 本論文主要使用亞洲的紫金牛屬植物和其近緣物種作為材料進行分子譜系研究。結果發現紫金牛屬並非單系群,且至少有另外四個屬的植物被包含於紫金牛屬支序中,四個屬分別為管金牛屬、管藥金牛屬、島金牛屬和環蕊金牛屬;此結果顯示紫金牛亞科中屬的界限應該被重新訂正。另外,紫金牛屬下的分類系統僅有部分為單系群,部分亞屬的分類定位應被重新檢視。 本研究定序了Ardisia pusilla和Labisia pumila之葉綠體基因體,並加入其餘已知的本屬及其近緣群之完整葉綠體基因體進行比較基因體學研究。結果發現紫金牛屬和其近緣群之葉綠體基因體的結構、序列長度、GC含量、密碼子使用頻率等特徵均高度保守。利用完整葉綠體基因體序列進行譜系分析的結果顯示紫金牛支序中屬、亞屬和種的關係均有高度解析力。另外,本研究亦辨識出三個高度變異的葉綠體片段,可能為對於紫金牛和其近緣群具有高度解析力的分子標記。 綜合紫牛金屬譜系分析結果,以及利用共譜系分析和拓撲學測試檢視具有葉瘤的紫金牛屬植物和其共生的伯克氏菌的演化關係,結果發現紫金牛屬植物宿主和其共生的伯克氏菌的譜系關係不具有嚴格的對應關係而僅是大致上相同,顯示雖然共同種化為主要的演化事件,但宿主轉移事件亦偶爾發生。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:16Z (GMT). No. of bitstreams: 1 U0001-0902202223462800.pdf: 7668988 bytes, checksum: 932e741320f7c949609a607b0d8f8f78 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii Chapter 1. Overview 1 Introduction of Ardisia 1 Taxonomy of Ardisia and allied genera 4 Leaf nodule symbiosis in Ardisia 7 Aims of the dissertation 12 Chapter 2. Phylogeny of Asian Ardisia species and allies 19 Abstract 20 Introduction 21 Materials and Methods 24 Results 27 Discussion 31 Taxonomic treatment 40 Conclusion 44 Chapter 3. Plastomes of Ardisia and allies 58 Abstract 59 Introduction 61 Materials Methods 63 Results 67 Discussion 72 Conclusion 77 Chapter 4. Cophylogeny of Ardisia and their leaf nodule symbionts 99 Abstract 100 Introduction 101 Materials and Methods 102 Results 106 Discussion 109 Conclusion 112 Chapter 5. Conclusions and future works 123 References 125 | |
| dc.language.iso | en | |
| dc.subject | 葉瘤共生現象 | zh_TW |
| dc.subject | 分類學 | zh_TW |
| dc.subject | 伯克氏菌 | zh_TW |
| dc.subject | 報春花科 | zh_TW |
| dc.subject | 紫金牛科 | zh_TW |
| dc.subject | 紫金牛屬 | zh_TW |
| dc.subject | 葉綠體基因體 | zh_TW |
| dc.subject | Ardisia | en |
| dc.subject | taxonomy | en |
| dc.subject | Primulaceae | en |
| dc.subject | plastome | en |
| dc.subject | Myrsinaceae | en |
| dc.subject | leaf nodule symbiosis | en |
| dc.subject | Burkholderia | en |
| dc.title | 紫金牛屬植物系統分類與其內共生細菌之演化 | zh_TW |
| dc.title | "Systematics and evolution of Ardisia (Primulaceae), with notes on their endosymbiont, Burkholderia (Burkholderiaceae)" | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-7364-1218 | |
| dc.contributor.oralexamcommittee | 楊宗愈(Hsing-Juh Lin),鍾國芳(Teng-Chiu Lin),李承叡,顧銓 | |
| dc.contributor.oralexamcommittee-orcid | 楊宗愈(0000-0001-8322-7195) | |
| dc.subject.keyword | 分類學,伯克氏菌,報春花科,紫金牛科,紫金牛屬,葉綠體基因體,葉瘤共生現象, | zh_TW |
| dc.subject.keyword | Ardisia,Burkholderia,leaf nodule symbiosis,Myrsinaceae,plastome,Primulaceae,taxonomy, | en |
| dc.relation.page | 148 | |
| dc.identifier.doi | 10.6342/NTU202200491 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-11 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-02-01 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0902202223462800.pdf | 7.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
