請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81813完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
| dc.contributor.author | Yu-En Lin | en |
| dc.contributor.author | 林毓恩 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:12Z | - |
| dc.date.available | 2026-08-01 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | Agrawal, T., and Hasan, G. (2015). Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca(2)(+) signaling. Elife 4, e07046. An, H., Kim, I.S., Koppula, S., Kim, B.W., Park, P.J., Lim, B.O., Choi, W.S., Lee, K.H., and Choi, D.K. (2010). Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J Ethnopharmacol 130, 290-298. Angeby-Moller, K., Berge, O.G., and Hamers, F.P. (2008). Using the CatWalk method to assess weight-bearing and pain behaviour in walking rats with ankle joint monoarthritis induced by carrageenan: effects of morphine and rofecoxib. J Neurosci Methods 174, 1-9. Arsalane, K., Dubois, C.M., Muanza, T., Begin, R., Boudreau, F., Asselin, C., and Cantin, A.M. (1997). Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol 17, 599-607. Aso, Y., Siwanowicz, I., Bracker, L., Ito, K., Kitamoto, T., and Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20, 1445-1451. Bainton, R.J., Tsai, L.T., Schwabe, T., DeSalvo, M., Gaul, U., and Heberlein, U. (2005). moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell 123, 145-156. Barone, M.C., Sykiotis, G.P., and Bohmann, D. (2011). Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease. Dis Model Mech 4, 701-707. Belanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14, 724-738. Bell, K.F., Al-Mubarak, B., Martel, M.A., McKay, S., Wheelan, N., Hasel, P., Markus, N.M., Baxter, P., Deighton, R.F., Serio, A., Bilican, B., Chowdhry, S., Meakin, P.J., Ashford, M.L., Wyllie, D.J., Scannevin, R.H., Chandran, S., Hayes, J.D., and Hardingham, G.E. (2015). Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 6, 7066. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20, 415-455. Betarbet, R., Canet-Aviles, R.M., Sherer, T.B., Mastroberardino, P.G., McLendon, C., Kim, J.H., Lund, S., Na, H.M., Taylor, G., Bence, N.F., Kopito, R., Seo, B.B., Yagi, T., Yagi, A., Klinefelter, G., Cookson, M.R., and Greenamyre, J.T. (2006). Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22, 404-420. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., and Greenamyre, J.T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3, 1301-1306. Bie, X., Chen, Y., Han, J., Dai, H., Wan, H., and Zhao, T. (2007). Effects of gastrodin on amino acids after cerebral ischemia-reperfusion injury in rat striatum. Asia Pac J Clin Nutr 16 Suppl 1, 305-308. Biernacka, J.M., Chung, S.J., Armasu, S.M., Anderson, K.S., Lill, C.M., Bertram, L., Ahlskog, J.E., Brighina, L., Frigerio, R., and Maraganore, D.M. (2016). Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease. Parkinsonism Relat Disord 32, 25-30. Bou Dib, P., Gnagi, B., Daly, F., Sabado, V., Tas, D., Glauser, D.A., Meister, P., and Nagoshi, E. (2014). A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet 10, e1004718. Bove, J., Prou, D., Perier, C., and Przedborski, S. (2005). Toxin-induced models of Parkinson's disease. NeuroRx 2, 484-494. Caldwell, K.A., Shu, Y., Roberts, N.B., Caldwell, G.A., and O'Donnell, J.M. (2013). Invertebrate models of dystonia. Curr Neuropharmacol 11, 16-29. Cannon, J.R., Tapias, V., Na, H.M., Honick, A.S., Drolet, R.E., and Greenamyre, J.T. (2009). A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis 34, 279-290. Chapuis, S., Ouchchane, L., Metz, O., Gerbaud, L., and Durif, F. (2005). Impact of the motor complications of Parkinson's disease on the quality of life. Mov Disord 20, 224-230. Chatterjee, N., and Bohmann, D. (2012). A versatile PhiC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS One 7, e34063. Chen, A.Y., Wilburn, P., Hao, X., and Tully, T. (2014). Walking deficits and centrophobism in an alpha-synuclein fly model of Parkinson's disease. Genes Brain Behav 13, 812-820. Chen, C.Y., Weng, Y.H., Chien, K.Y., Lin, K.J., Yeh, T.H., Cheng, Y.P., Lu, C.S., and Wang, H.L. (2012). (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death Differ 19, 1623-1633. Chen, P.J., Hsieh, C.L., Su, K.P., Hou, Y.C., Chiang, H.M., and Sheen, L.Y. (2009). Rhizomes of Gastrodia elata B(L) possess antidepressant-like effect via monoamine modulation in subchronic animal model. Am J Chin Med 37, 1113-1124. Chen, P.J., and Sheen, L.Y. (2011). Gastrodiae Rhizoma (tian ma): a review of biological activity and antidepressant mechanisms. J Tradit Complement Med 1, 31-40. Chen, W.C., Lai, Y.S., Lin, S.H., Lu, K.H., Lin, Y.E., Panyod, S., Ho, C.T., and Sheen, L.Y. (2016). Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J Ethnopharmacol 182, 190-199. Chen, W.C., Lai, Y.S., Lu, K.H., Lin, S.H., Liao, L.Y., Ho, C.T., and Sheen, L.Y. (2015). Method development and validation for the high-performance liquid chromatography assay of gastrodin in water extracts from different sources of Gastrodia elata Blume. J Food Drug Anal 23, 803-810. Chin-Chan, M., Navarro-Yepes, J., and Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9, 124. Chou, J.S., Chen, C.Y., Chen, Y.L., Weng, Y.H., Yeh, T.H., Lu, C.S., Chang, Y.M., and Wang, H.L. (2014). (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiol Dis 68, 190-199. Chuang, C.L., Lu, Y.N., Wang, H.C., and Chang, H.Y. (2014). Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival. Hum Mol Genet 23, 5649-5658. Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Williamson, R.E., and Lansbury, P.T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97, 571-576. Cookson, M.R. (2010). The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci 11, 791-797. Cookson, M.R., Xiromerisiou, G., and Singleton, A. (2005). How genetics research in Parkinson's disease is enhancing understanding of the common idiopathic forms of the disease. Curr Opin Neurol 18, 706-711. Coon, S., Stark, A., Peterson, E., Gloi, A., Kortsha, G., Pounds, J., Chettle, D., and Gorell, J. (2006). Whole-body lifetime occupational lead exposure and risk of Parkinson's disease. Environ Health Perspect 114, 1872-1876. Cording, A.C., Shiaelis, N., Petridi, S., Middleton, C.A., Wilson, L.G., and Elliott, C.J.H. (2017). Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson's disease. NPJ Parkinsons Dis 3, 34. Correia Guedes, L., Ferreira, J.J., Rosa, M.M., Coelho, M., Bonifati, V., and Sampaio, C. (2010). Worldwide frequency of G2019S LRRK2 mutation in Parkinson's disease: a systematic review. Parkinsonism Relat Disord 16, 237-242. Corrigan, F.M., Wienburg, C.L., Shore, R.F., Daniel, S.E., and Mann, D. (2000). Organochlorine insecticides in substantia nigra in Parkinson's disease. J Toxicol Environ Health A 59, 229-234. Dagda, R.K., Zhu, J., and Chu, C.T. (2009). Mitochondrial kinases in Parkinson's disease: converging insights from neurotoxin and genetic models. Mitochondrion 9, 289-298. Dai, J.N., Zong, Y., Zhong, L.M., Li, Y.M., Zhang, W., Bian, L.G., Ai, Q.L., Liu, Y.D., Sun, J., and Lu, D. (2011). Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 6, e21891. Dauer, W., and Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron 39, 889-909. De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., Conte, M., Rosato, C., Ciniglio Appiani, M., and de Vincentiis, M. (2016). Parkinson's disease: Autoimmunity and neuroinflammation. Autoimmun Rev 15, 1005-1011. del Valle Rodriguez, A., Didiano, D., and Desplan, C. (2011). Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9, 47-55. Deng, S., Deng, X., Yuan, L., Song, Z., Yang, Z., Xiong, W., and Deng, H. (2015). Genetic analysis of SNCA coding mutation in Chinese Han patients with Parkinson disease. Acta Neurol Belg 115, 267-271. Dhanalakshmi, C., Janakiraman, U., Manivasagam, T., Justin Thenmozhi, A., Essa, M.M., Kalandar, A., Khan, M.A., and Guillemin, G.J. (2016). Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease. Neurochem Res 41, 1899-1910. Dhanalakshmi, C., Manivasagam, T., Nataraj, J., Justin Thenmozhi, A., and Essa, M.M. (2015). Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Evid Based Complement Alternat Med 2015, 626028. Dhillon, A.S., Tarbutton, G.L., Levin, J.L., Plotkin, G.M., Lowry, L.K., Nalbone, J.T., and Shepherd, S. (2008). Pesticide/environmental exposures and Parkinson's disease in East Texas. J Agromedicine 13, 37-48. Doo, A.R., Kim, S.N., Hahm, D.H., Yoo, H.H., Park, J.Y., Lee, H., Jeon, S., Kim, J., Park, S.U., and Park, H.J. (2014). Gastrodia elata Blume alleviates L-DOPA-induced dyskinesia by normalizing FosB and ERK activation in a 6-OHDA-lesioned Parkinson's disease mouse model. BMC Complement Altern Med 14, 107. Duan, X., Wang, W., Liu, X., Yan, H., Dai, R., and Lin, Q. (2015). Neuroprotective effect of ethyl acetate extract from Gastrodia elata against transient focal cerebral ischemia in rats induced by middle cerebral artery occlusion. J Tradit Chin Med 35, 671-678. Elbaz, A., Bower, J.H., Maraganore, D.M., McDonnell, S.K., Peterson, B.J., Ahlskog, J.E., Schaid, D.J., and Rocca, W.A. (2002). Risk tables for parkinsonism and Parkinson's disease. J Clin Epidemiol 55, 25-31. Endo, F., Komine, O., Fujimori-Tonou, N., Katsuno, M., Jin, S., Watanabe, S., Sobue, G., Dezawa, M., Wyss-Coray, T., and Yamanaka, K. (2015). Astrocyte-derived TGF-beta1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 11, 592-604. Espay, A.J., Brundin, P., and Lang, A.E. (2017). Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol 13, 119-126. Esteves, A.R., Swerdlow, R.H., and Cardoso, S.M. (2014). LRRK2, a puzzling protein: insights into Parkinson's disease pathogenesis. Exp Neurol 261, 206-216. Fan, Y., Howden, A.J.M., Sarhan, A.R., Lis, P., Ito, G., Martinez, T.N., Brockmann, K., Gasser, T., Alessi, D.R., and Sammler, E.M. (2018). Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem J 475, 23-44. Ferguson, L.W., Rajput, A.H., and Rajput, A. (2016). Early-onset vs. Late-onset Parkinson's disease: A Clinical-pathological Study. Can J Neurol Sci 43, 113-119. Fleming, L., Mann, J.B., Bean, J., Briggle, T., and Sanchez-Ramos, J.R. (1994). Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol 36, 100-103. Franco, R., Li, S., Rodriguez-Rocha, H., Burns, M., and Panayiotidis, M.I. (2010). Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chem Biol Interact 188, 289-300. Freeman, M.R. (2015). Drosophila central nervous system glia. Cold Spring Harb Perspect Biol 7, a020552. Freire, C., and Koifman, S. (2012). Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology 33, 947-971. Friedman, A. (1994). Old-onset Parkinson's disease compared with young-onset disease: clinical differences and similarities. Acta Neurol Scand 89, 258-261. Fuji, R.N., Flagella, M., Baca, M., Baptista, M.A., Brodbeck, J., Chan, B.K., Fiske, B.K., Honigberg, L., Jubb, A.M., Katavolos, P., Lee, D.W., Lewin-Koh, S.C., Lin, T., Liu, X., Liu, S., Lyssikatos, J.P., O'Mahony, J., Reichelt, M., Roose-Girma, M., Sheng, Z., Sherer, T., Smith, A., Solon, M., Sweeney, Z.K., Tarrant, J., Urkowitz, A., Warming, S., Yaylaoglu, M., Zhang, S., Zhu, H., Estrada, A.A., and Watts, R.J. (2015). Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med 7, 273ra215. Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S., and Obata, F. (2002). A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51, 296-301. Gan, L., Vargas, M.R., Johnson, D.A., and Johnson, J.A. (2012). Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci 32, 17775-17787. Gao, H.M., and Hong, J.S. (2011). Gene-environment interactions: key to unraveling the mystery of Parkinson's disease. Prog Neurobiol 94, 1-19. Garcia-Miralles, M., Coomaraswamy, J., Habig, K., Herzig, M.C., Funk, N., Gillardon, F., Maisel, M., Jucker, M., Gasser, T., Galter, D., and Biskup, S. (2015). No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts. PLoS One 10, e0118947. Gasser, T. (2009). Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11, e22. Gonera, E.G., van't Hof, M., Berger, H.J., van Weel, C., and Horstink, M.W. (1997). Symptoms and duration of the prodromal phase in Parkinson's disease. Mov Disord 12, 871-876. Gorell, J.M., Peterson, E.L., Rybicki, B.A., and Johnson, C.C. (2004). Multiple risk factors for Parkinson's disease. J Neurol Sci 217, 169-174. Greggio, E., and Cookson, M.R. (2009). Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro 1, e00002. Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M.P., Beilina, A., Blackinton, J., Thomas, K.J., Ahmad, R., Miller, D.W., Kesavapany, S., Singleton, A., Lees, A., Harvey, R.J., Harvey, K., and Cookson, M.R. (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23, 329-341. Greggio, E., Zambrano, I., Kaganovich, A., Beilina, A., Taymans, J.M., Daniels, V., Lewis, P., Jain, S., Ding, J., Syed, A., Thomas, K.J., Baekelandt, V., and Cookson, M.R. (2008). The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 283, 16906-16914. Grotewiel, M.S., Martin, I., Bhandari, P., and Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing Res Rev 4, 372-397. Guan, Y., Tan, Y., Liu, W., Yang, J., Wang, D., Pan, D., Sun, Y., and Zheng, C. (2018). NF-E2-Related Factor 2 Suppresses Intestinal Fibrosis by Inhibiting Reactive Oxygen Species-Dependent TGF-beta1/SMADs Pathway. Dig Dis Sci 63, 366-380. Guttman, M., Kish, S.J., and Furukawa, Y. (2003). Current concepts in the diagnosis and management of Parkinson's disease. CMAJ 168, 293-301. Han, Y.J., Je, J.H., Kim, S.H., Ahn, S.M., Kim, H.N., Kim, Y.R., Choi, Y.W., Shin, H.K., and Choi, B.T. (2014). Gastrodia elata shows neuroprotective effects via activation of PI3K signaling against oxidative glutamate toxicity in HT22 cells. Am J Chin Med 42, 1007-1019. Harischandra, D.S., Jin, H., Anantharam, V., Kanthasamy, A., and Kanthasamy, A.G. (2015). alpha-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson's disease. Toxicol Sci 143, 454-468. Hasegawa, K., and Kowa, H. (1997). Autosomal dominant familial Parkinson disease: older onset of age, and good response to levodopa therapy. Eur Neurol 38 Suppl 1, 39-43. Hatcher, J.M., Richardson, J.R., Guillot, T.S., McCormack, A.L., Di Monte, D.A., Jones, D.P., Pennell, K.D., and Miller, G.W. (2007). Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204, 619-630. He, J.C., Yuan, C.X., Wei, H.C., and Chen, R.X. (2003). [Effect of Chinese and western medicine integration on spinning behavior of rats with Parkinson disease]. Zhong Xi Yi Jie He Xue Bao 1, 293-295. Heisenberg, M. (1997). Genetic approaches to neuroethology. Bioessays 19, 1065-1073. Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nat Rev Neurosci 4, 266-275. Hewitt, V.L., and Whitworth, A.J. (2017). Mechanisms of Parkinson's disease: lessons from Drosophila. Curr Top Dev Biol 121, 173-200. Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., and Zalutsky, R. (2007). How common are the 'common' neurologic disorders? Neurology 68, 326-337. Hoehn, M.M., and Yahr, M.D. (1967). Parkinsonism: onset, progression and mortality. Neurology 17, 427-442. Houlden, H., and Singleton, A.B. (2012). The genetics and neuropathology of Parkinson's disease. Acta Neuropathol 124, 325-338. Hu, X.J., Yang, X.S., and Yang, X.G. (2003). [Clinical observation on the efficacy enhancing and toxicity attenuating effect of nuzhen yangyin granule to the anti-parkinsonism therapy mainly with Medopa]. Zhongguo Zhong Xi Yi Jie He Za Zhi 23, 811-814. Hughes, A.J., Daniel, S.E., Kilford, L., and Lees, A.J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55, 181-184. Iliadi, K.G. (2009). The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet 23, 136-146. Islam, M.S., Nolte, H., Jacob, W., Ziegler, A.B., Putz, S., Grosjean, Y., Szczepanowska, K., Trifunovic, A., Braun, T., Heumann, H., Heumann, R., Hovemann, B., Moore, D.J., and Kruger, M. (2016). Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease. Hum Mol Genet 25, 5365-5382. Jang, J.H., Son, Y., Kang, S.S., Bae, C.S., Kim, J.C., Kim, S.H., Shin, T., and Moon, C. (2015). Neuropharmacological potential of Gastrodia elata Blume and its components. Evid Based Complement Alternat Med 2015, 309261. Jankovic, J. (2002). Levodopa strengths and weaknesses. Neurology 58, S19-32. Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79, 368-376. Jardine, H., MacNee, W., Donaldson, K., and Rahman, I. (2002). Molecular mechanism of transforming growth factor (TGF)-beta1-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-1/ARE and Fra-1. J Biol Chem 277, 21158-21166. Jia, Y., Li, X., Xie, H., Shen, J., Luo, J., Wang, J., Wang, K.D., Liu, Q., and Kong, L. (2014). Analysis and pharmacokinetics studies of gastrodin and p-hydroxybenzyl alcohol in dogs using ultra fast liquid chromatography-tandem mass spectrometry method. J Pharm Biomed Anal 99, 83-88. Jiang, G., Hu, Y., Liu, L., Cai, J., Peng, C., and Li, Q. (2014). Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75, 79-88. Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A., and Bolanos, J.P. (2015). Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22, 1877-1889. Jo, K., Jeon, S., Ahn, C.W., Han, S.H., and Suh, H.J. (2017). Changes in Drosophila melanogaster sleep-wake behavior due to lotus (Nelumbo nucifera) seed and Hwang Jeong (Polygonatum sibiricum) extracts. Prev Nutr Food Sci 22, 293-299. Ju, X.H., Shi, Y., Liu, N., Guo, D.M., and Cui, X. (2010). Determination and pharmacokinetics of gastrodin in human plasma by HPLC coupled with photodiode array detector. J Chromatogr B Analyt Technol Biomed Life Sci 878, 1982-1986. Jung, J.W., Yoon, B.H., Oh, H.R., Ahn, J.H., Kim, S.Y., Park, S.Y., and Ryu, J.H. (2006). Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biol Pharm Bull 29, 261-265. Kala, S.V., and Jadhav, A.L. (1995). Low level lead exposure decreases in vivo release of dopamine in the rat nucleus accumbens: a microdialysis study. J Neurochem 65, 1631-1635. Kalinderi, K., Bostantjopoulou, S., and Fidani, L. (2016). The genetic background of Parkinson's disease: current progress and future prospects. Acta Neurol Scand 134, 314-326. Kamel, F., Tanner, C., Umbach, D., Hoppin, J., Alavanja, M., Blair, A., Comyns, K., Goldman, S., Korell, M., Langston, J., Ross, G., and Sandler, D. (2007). Pesticide exposure and self-reported Parkinson's disease in the agricultural health study. Am J Epidemiol 165, 364-374. Kancheva, V.D., and Kasaikina, O.T. (2013). Bio-antioxidants - a chemical base of their antioxidant activity and beneficial effect on human health. Curr Med Chem 20, 4784-4805. Kang, U.B., and Marto, J.A. (2017). Leucine-rich repeat kinase 2 and Parkinson's disease. Proteomics 17. Karayel, O., Tonelli, F., Virreira Winter, S., Geyer, P.E., Fan, Y., Sammler, E.M., Alessi, D.R., Steger, M., and Mann, M. (2020). Accurate MS-based Rab10 phosphorylation stoichiometry determination as readout for LRRK2 activity in Parkinson's disease. Mol Cell Proteomics 19, 1546-1560. Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A., and Yamamoto, M. (2001). Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6, 857-868. Kaur, D., Peng, J., Chinta, S.J., Rajagopalan, S., Di Monte, D.A., Cherny, R.A., and Andersen, J.K. (2007). Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28, 907-913. Kay, D.M., Kramer, P., Higgins, D., Zabetian, C.P., and Payami, H. (2005). Escaping Parkinson's disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord 20, 1077-1078. Kim, I.S., Choi, D.K., and Jung, H.J. (2011). Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 16, 5349-5361. Kim, K.S., Marcogliese, P.C., Yang, J., Callaghan, S.M., Resende, V., Abdel-Messih, E., Marras, C., Visanji, N.P., Huang, J., Schlossmacher, M.G., Trinkle-Mulcahy, L., Slack, R.S., Lang, A.E., Canadian Lrrk2 in Inflammation, T., and Park, D.S. (2018). Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc Natl Acad Sci USA 115, E5164-E5173. Kim, T.H., Cho, K.H., Jung, W.S., and Lee, M.S. (2012). Herbal medicines for Parkinson's disease: a systematic review of randomized controlled trials. PLoS One 7, e35695. Kim, Y.C., Lee, H.G., and Han, K.A. (2007). D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27, 7640-7647. Kim, Y.H., and Park, J.H. (2017). Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia. Anat Cell Biol 50, 143-151. Kong, E.C., Woo, K., Li, H., Lebestky, T., Mayer, N., Sniffen, M.R., Heberlein, U., Bainton, R.J., Hirsh, J., and Wolf, F.W. (2010). A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 5, e9954. Kraft, A.D., Johnson, D.A., and Johnson, J.A. (2004). Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24, 1101-1112. Kremer, M.C., Jung, C., Batelli, S., Rubin, G.M., and Gaul, U. (2017). The glia of the adult Drosophila nervous system. Glia 65, 606-638. Kulisevsky, J., Pagonabarraga, J., Pascual-Sedano, B., Garcia-Sanchez, C., Gironell, A., and Trapecio Group, S. (2008). Prevalence and correlates of neuropsychiatric symptoms in Parkinson's disease without dementia. Mov Disord 23, 1889-1896. Kumar, H., Kim, I.S., More, S.V., Kim, B.W., Bahk, Y.Y., and Choi, D.K. (2013). Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson's disease model. Evid Based Complement Alternat Med 2013, 514095. Lai, S.L., and Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9, 703-709. Lang, C.A., Ray, S.S., Liu, M., Singh, A.K., and Cuny, G.D. (2015). Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking. Bioorg Med Chem Lett 25, 2713-2719. Lastres-Becker, I., Ulusoy, A., Innamorato, N.G., Sahin, G., Rabano, A., Kirik, D., and Cuadrado, A. (2012). alpha-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum Mol Genet 21, 3173-3192. Le Bourg, E., and Lints, F.A. (1992). Hypergravity and aging in Drosophila melanogaster. 4. Climbing activity. Gerontology 38, 59-64. Lee, H.E., Lee, Y.W., Park, S.J., Jeon, S.J., Kim, E., Lee, S., Han, A.R., Seo, E.K., and Ryu, J.H. (2015). 4-Hydroxybenzyl methyl ether improves learning and memory in mice via the activation of dopamine D1 receptor signaling. Neurobiol Learn Mem 121, 30-38. Lee, J.Y., Jang, Y.W., Kang, H.S., Moon, H., Sim, S.S., and Kim, C.J. (2006). Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch Pharm Res 29, 849-858. Lee, S., Bang, S.M., Lee, J.W., and Cho, K.S. (2014). Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. Evid Based Complement Alternat Med 2014, 967462. Li, J.Q., Tan, L., and Yu, J.T. (2014). The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 9, 47. Li, Q., Niu, C., Zhang, X., and Dong, M. (2018). Gastrodin and Isorhynchophylline Synergistically Inhibit MPP(+)-Induced Oxidative Stress in SH-SY5Y Cells by Targeting ERK1/2 and GSK-3beta Pathways: Involvement of Nrf2 Nuclear Translocation. ACS Chem Neurosci 9, 482-493. Li, X., Patel, J.C., Wang, J., Avshalumov, M.V., Nicholson, C., Buxbaum, J.D., Elder, G.A., Rice, M.E., and Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J Neurosci 30, 1788-1797. Li, Y., Liu, W., Oo, T.F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou, C., Geghman, K., Bogdanov, M., Przedborski, S., Beal, M.F., Burke, R.E., and Li, C. (2009). Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 12, 826-828. Lim, K.L., and Ng, C.H. (2009). Genetic models of Parkinson disease. Biochim Biophys Acta 1792, 604-615. Lin, C.H., Lin, H.I., Chen, M.L., Lai, T.T., Cao, L.P., Farrer, M.J., Wu, R.M., and Chien, C.T. (2016a). Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3beta activity. Hum Mol Genet 25, 1965-1978. Lin, C.H., Tsai, P.I., Wu, R.M., and Chien, C.T. (2010). LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3beta. J Neurosci 30, 13138-13149. Lin, X., Duan, X., Liang, Y.Y., Su, Y., Wrighton, K.H., Long, J., Hu, M., Davis, C.M., Wang, J., Brunicardi, F.C., Shi, Y., Chen, Y.G., Meng, A., and Feng, X.H. (2006). PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125, 915-928. Lin, Y.E., Chou, S.T., Lin, S.H., Lu, K.H., Panyod, S., Lai, Y.S., Ho, C.T., and Sheen, L.Y. (2018). Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. J Ethnopharmacol 215, 132-139. Lin, Y.E., Lin, S.H., Chen, W.C., Ho, C.T., Lai, Y.S., Panyod, S., and Sheen, L.Y. (2016b). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol 187, 57-65. Liou, H.H., Tsai, M.C., Chen, C.J., Jeng, J.S., Chang, Y.C., Chen, S.Y., and Chen, R.C. (1997). Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 48, 1583-1588. Liu, W.M., Wu, R.M., Lin, J.W., Liu, Y.C., Chang, C.H., and Lin, C.H. (2016). Time trends in the prevalence and incidence of Parkinson's disease in Taiwan: A nationwide, population-based study. J Formos Med Assoc 115, 531-538. Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., Ross, C.A., Montell, C., and Smith, W.W. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA 105, 2693-2698. Lu, C.S., Huang, C.C., Chu, N.S., and Calne, D.B. (1994). Levodopa failure in chronic manganism. Neurology 44, 1600-1602. Lu, K.H., Ou, G.L., Chang, H.P., Chen, W.C., Liu, S.H., and Sheen, L.Y. (2020). Safety evaluation of water extract of Gastrodia elata Blume: Genotoxicity and 28-day oral toxicity studies. Regul Toxicol Pharmacol 114, 104657. Lundblad, M., Usiello, A., Carta, M., Hakansson, K., Fisone, G., and Cenci, M.A. (2005). Pharmacological validation of a mouse model of L-DOPA-induced dyskinesia. Exp Neurol 194, 66-75. Luo, L., Kim, S.W., Lee, H.K., Kim, I.D., Lee, H., and Lee, J.K. (2017). Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 12, e0177322. M'Angale, P.G., and Staveley, B.E. (2016). The Bcl-2 homologue Buffy rescues alpha-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci 17, 24. Ma, C.L., Su, L., Xie, J.J., Long, J.X., Wu, P., and Gu, L. (2014). The prevalence and incidence of Parkinson's disease in China: a systematic review and meta-analysis. J Neural Transm (Vienna) 121, 123-134. Madabattula, S.T., Strautman, J.C., Bysice, A.M., O'Sullivan, J.A., Androschuk, A., Rosenfelt, C., Doucet, K., Rouleau, G., and Bolduc, F. (2015). Quantitative analysis of climbing defects in a Drosophila model of neurodegenerative disorders. J Vis Exp, e52741. Maksoud, E., Liao, E.H., and Haghighi, A.P. (2019). A neuron-glial trans-signaling cascade mediates LRRK2-induced neurodegeneration. Cell Rep 26, 1774-1786 e1774. Mao, H., and Liu, B. (2008). Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. Neuroreport 19, 1317-1320. Mao, Z., and Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 3, 5. Martin, I., Kim, J.W., Dawson, V.L., and Dawson, T.M. (2014). LRRK2 pathobiology in Parkinson's disease. J Neurochem 131, 554-565. Mata,……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81813 | - |
| dc.description.abstract | 帕金森氏症為常見的老化型神經退行性疾病之一,迄今仍缺乏有效的預防與治療方法。因此,尋找替代或互補的治療方法是迫切需要的。天麻(Gastrodia elata Blume)係蘭科植物之塊莖,為傳統中醫藥常用的食療素材,同時亦屬於臺灣衛福部可供食品原料公告之草本植物。傳統上已被用於治療癲癇,頭暈和偏頭痛等神經系統疾病,也對毒素誘導的帕金森氏症模式具有神經保護和抗發炎作用。然而,天麻在神經保護機制方面,針對特定帕金森氏症之治療,是否具有藥物指導下之互補性,以及發展為替代性功能食品之潛力等仍然不清楚。帕金森氏症的大多數病例雖是屬於偶發性的,但亦有10%帕金森氏症起因於家族性遺傳的基因變異。富含白胺酸重複激酶2號(LRRK2-G2019S)基因錯義突變是帕金森氏症最常見之體染色體顯性家族性和偶發性變異,其臨床症狀上也顯現典型症狀。根據先前所建立之研究顯示,果蠅表達Lrrk2-G2019S會產生神經樹突退化、多巴胺神經元喪失及運動缺失。在本研究中我們發現餵食Lrrk2-G2019S果蠅 0.1%(w/w)的天麻,能夠有效防止運動能力的缺失,並且降低成年果蠅腦中多巴胺神經元的喪失。我們進一步研究天麻保護多巴胺神經元的分子機制,發現天麻不僅可以抑制Lrrk2-G2019S蛋白質的堆積及過度活化,同時亦可活化腦部膠細胞中Akt/GSK3β/Nrf2訊息路徑,促進果蠅大腦神經元的存活。我們更利用基因交互作用之實驗,證明大量活化膠細胞之Nrf2本身即具有改善因神經表達Lrrk2-G2019S所引致之運動缺失及多巴胺神經元喪失。我們發現膠細胞中Nrf2之活化可拮抗Lrrk2-G2019S所引致之BMP/Mad 訊息傳遞,以達到神經保護之功效。我們進一步使用G2019S之基因轉殖小鼠模式來驗證天麻在果蠅模式中的機制,結果顯示餵食天麻可以改善G2019S小鼠之運動障礙及保護多巴胺神經元之損傷。藉由檢測小鼠腦部之蛋白質訊息傳遞路徑,我們發現餵食天麻可以抑制Lrrk2-G2019S之堆積及過度活化,同時減緩TGF-β/Smad2/3(與果蠅之BMP/Mad在演化上同源)訊息傳遞來達到神經保護之效,而此保護機制在果蠅和小鼠十分吻合。綜合上述,我們的結果顯示天麻可以藉由活化膠細胞之Nrf2訊息傳遞來保護及改善Lrrk2-G2019S動物模式中的多巴胺神經元死亡與運動障礙。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:12Z (GMT). No. of bitstreams: 1 U0001-0208202115333100.pdf: 29593879 bytes, checksum: 7c663624973c5283290636921d41ad45 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Table of Contents Chinese Abstract ............................................................................................................ I Abstract ........................................................................................................................ III Table of Contents .......................................................................................................... V List of Figure .............................................................................................................VIII List of Table ................................................................................................................. XI 1. INTRODUCTION ............................................................................................... 1 2. LITERATURE REVIEW ................................................................................... 4 2.1. Parkinson’s disease (PD) ........................................................................... 4 2.1.1. Basal ganglia circuitry and DA in motor control ............................... 5 2.1.2. Symptoms and clinical diagnosis of PD ............................................. 7 2.1.3. The staging of PD ............................................................................... 9 2.1.4. Epidemiology of PD ......................................................................... 10 2.1.5. Environmental contributors to PD .................................................... 11 2.1.6. Genetics of PD .................................................................................. 17 2.1.7. PARK8, Leucine-rich Repeat Kinase 2 (LRRK2) ............................. 19 2.1.8. Therapies of PD ................................................................................ 25 2.1.9. Traditional Chinese Medicine (TCM) and PD .................................. 26 2.2. Gastrodia elata Blume (GE) ....................................................................... 28 2.2.1. Phytochemistry and pharmacological potential of GE ..................... 30 2.3. Animal models of PD ................................................................................... 35 2.3.1. Drosophila melanogaster model of PD ........................................ 36 2.3.2. GAL4-UAS system ........................................................................ 38 3. AIMS, HYPOTHESES, AND OBJECTIVES ................................................ 40 3.1. Background and problems ....................................................................... 40 3.2. Aims and hypotheses ............................................................................... 40 3.3. Objectives ................................................................................................ 41 4. MATERIALS AND METHODS ..................................................................... 43 4.1. Drosophila stocks and maintenance ........................................................ 43 4.2. Plant material ........................................................................................... 43 4.3. Preparation of WGE and related chemical compounds ........................... 44 4.4. Determination of the active components in the WGE ............................. 45 4.5. Climbing assay ......................................................................................... 45 4.6. Walking assay .......................................................................................... 46 4.7. Immunostaining of whole-mount adult brains ......................................... 46 4.8. Immunoblotting of fly brain lysates ......................................................... 48 4.9. ARE-GFP reporter assay .......................................................................... 49 4.10. Animal care and treatments .................................................................... 50 4.11. Behavioral assays ................................................................................... 50 4.12. Immunohistochemical staining of mice brains ....................................... 51 4.13. Immunoblotting of mice brain ................................................................ 51 4.14. Data analysis ........................................................................................... 52 5. RESULTS ............................................................................................................ 53 6. DISSCUSSION .................................................................................................. 131 7. CONCLUSION ................................................................................................. 158 8. ABBREVIATIONS ........................................................................................... 164 9. REFERENCES .................................................................................................. 168 " | |
| dc.language.iso | en | |
| dc.subject | Nrf2/BMP訊息傳遞 | zh_TW |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | 天麻 | zh_TW |
| dc.subject | 富含白胺酸重複激酶2號 | zh_TW |
| dc.subject | 膠細胞 | zh_TW |
| dc.subject | Nrf2/BMP pathway | en |
| dc.subject | Parkinson’s disease | en |
| dc.subject | Gastrodia elata Blume | en |
| dc.subject | Leucine-rich repeat kinase 2 | en |
| dc.subject | glial cell | en |
| dc.title | 天麻萃取物對於Lrrk2-G2019S帕金森氏症動物模式之效果與機制 | zh_TW |
| dc.title | The effects and mechanisms of Gastrodia elata Blume extract in Lrrk2-G2019S Parkinson's disease models | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 簡正鼎(Cheng-Ting Chien) | |
| dc.contributor.oralexamcommittee | 賴文崧(Hsin-Tsai Liu),謝淑貞(Chih-Yang Tseng),林靜嫻,林書葦 | |
| dc.subject.keyword | 帕金森氏症,天麻,富含白胺酸重複激酶2號,膠細胞,Nrf2/BMP訊息傳遞, | zh_TW |
| dc.subject.keyword | Parkinson’s disease,Gastrodia elata Blume,Leucine-rich repeat kinase 2,glial cell,Nrf2/BMP pathway, | en |
| dc.relation.page | 192 | |
| dc.identifier.doi | 10.6342/NTU202101998 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202115333100.pdf 此日期後於網路公開 2026-08-01 | 28.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
