請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
| dc.contributor.author | Yu-Ling Liu | en |
| dc.contributor.author | 劉育伶 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:51Z | - |
| dc.date.available | 2022-11-24T09:24:51Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-11 | |
| dc.identifier.citation | 1. Tedstone, A.A., D.J. Lewis, and P. O’Brien, Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides. Chemistry of Materials, 2016. 28(7): p. 1965-1974. 2. Li, S., et al., Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics. Adv Sci (Weinh), 2021. 8(11): p. e2004438. 3. Lin, Y.C., et al., Controllable Thin-Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers. Adv Sci (Weinh), 2021. 8(9): p. 2004249. 4. Hwang, J., et al., Giant renormalization of dopant impurity levels in 2D semiconductor MoS2. Sci Rep, 2020. 10(1): p. 4938. 5. Okada, M., et al., Growth of MoS2–Nb-doped MoS2 lateral homojunctions: A monolayer p–n diode by substitutional doping. APL Materials, 2021. 9(12). 6. Dolui, K., et al., Possible doping strategies for MoS${}_{2}$ monolayers: An ab initio study. Physical Review B, 2013. 88(7): p. 075420. 7. Fang, H., et al., Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Letters, 2013. 13(5): p. 1991-1995. 8. Komsa, H.-P., et al., Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Physical Review Letters, 2012. 109(3): p. 035503. 9. Karthikeyan, J., et al., Which Transition Metal Atoms Can Be Embedded into Two-Dimensional Molybdenum Dichalcogenides and Add Magnetism? Nano Letters, 2019. 19(7): p. 4581-4587. 10. Coelho, P.M., et al., Post-Synthesis Modifications of Two-Dimensional MoSe2 or MoTe2 by Incorporation of Excess Metal Atoms into the Crystal Structure. ACS Nano, 2018. 12(4): p. 3975-3984. 11. Wang, J., et al., Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method. Materials Today Advances, 2020. 8: p. 100098. 12. Kutana, A., E.S. Penev, and B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale, 2014. 6(11): p. 5820-5825. 13. Xie, L.M., Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale, 2015. 7(44): p. 18392-401. 14. Gao, Y., et al., Unraveling Structural and Optical Properties of Two-Dimensional MoxW1–xS2 Alloys. The Journal of Physical Chemistry C, 2020. 125(1): p. 774-781. 15. Opoku, F., et al., Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study. New Journal of Chemistry, 2017. 41(20): p. 11701-11713. 16. Asokan, V., et al., Growth of 'W' doped molybdenum disulfide on graphene transferred molybdenum substrate. Sci Rep, 2018. 8(1): p. 7396. 17. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451. 18. Zeng, Z., et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed Engl, 2011. 50(47): p. 11093-7. 19. Coleman, J.N., et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011. 331(6017): p. 568-571. 20. Feng, Q., et al., Growth of MoS2(1–x)Se2x (x = 0.41–1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. ACS Nano, 2015. 9(7): p. 7450-7455. 21. Yang, P., et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018. 9(1): p. 979. 22. Chang, M.C., et al., Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat Commun, 2020. 11(1): p. 3682. 23. Li, S., et al., Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat Mater, 2018. 17(6): p. 535-542. 24. Li, S., Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. iScience, 2021. 24(11): p. 103229. 25. Chen, W., et al., Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. Journal of the American Chemical Society, 2015. 137(50): p. 15632-15635. 26. Zhao, Y. and S. Jin, Controllable Water Vapor Assisted Chemical Vapor Transport Synthesis of WS2–MoS2 Heterostructure. ACS Materials Letters, 2019. 2(1): p. 42-48. 27. Zhang, K., et al., Tuning the Electronic and Photonic Properties of Monolayer MoS 2 via In Situ Rhenium Substitutional Doping. Advanced functional materials., 2018. 28(16): p. 1706950. 28. Zhang, T., et al., Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano, 2020. 14(4): p. 4326-4335. 29. Zhang, K., et al., Tuning Transport and Chemical Sensitivity via Niobium Doping of Synthetic MoS2. Advanced Materials Interfaces, 2020. 7(18). 30. Kozhakhmetov, A., et al., Scalable Substitutional Re-Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide. Adv Mater, 2020. 32(50): p. e2005159. 31. Lin, Y.-C., et al., Direct Synthesis of van der Waals Solids. ACS Nano, 2014. 8(4): p. 3715-3723. 32. Jia, Q.X., et al., Polymer-assisted deposition of metal-oxide films. Nat Mater, 2004. 3(8): p. 529-32. 33. Lin, Y., et al., Structural and dielectric properties of epitaxial Ba1−xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Applied Physics Letters, 2004. 85(21): p. 5007-5009. 34. Burrell, A.K., T. Mark McCleskey, and Q.X. Jia, Polymer assisted deposition. Chem Commun (Camb), 2008(11): p. 1271-7. 35. Zou, G.F., et al., Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chemical Society Reviews, 2013. 42(2): p. 439-449. 36. Yang, H., et al., Highly Scalable Synthesis of MoS2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. Chemistry of Materials, 2017. 29(14): p. 5772-5776. 37. Gillman, E.S., et al., Polymer-assisted conformal coating of TiO2 thin films. Journal of Applied Physics, 2010. 108(4): p. 044310. 38. Jiang, S., S. Liu, and W. Feng, PVA hydrogel properties for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(7): p. 1228-1233. 39. Abebe, B., et al., PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: synthesis, optimization, and evaluation of antibacterial activity. Materials Research Express, 2020. 7(4). 40. Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13(12): p. 1135-1142. 41. Chen, Y., et al., Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys. Nanoscale, 2014. 6(5): p. 2833-9. 42. Wang, Z., et al., Chemical Vapor Deposition of Monolayer Mo(1-x)W(x)S2 Crystals with Tunable Band Gaps. Sci Rep, 2016. 6: p. 21536. 43. Song, J.G., et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat Commun, 2015. 6: p. 7817. 44. Chen, Y., et al., Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano, 2013. 7(5): p. 4610-4616. 45. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213. 46. Gupta, A., et al., Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Letters, 2006. 6(12): p. 2667-2673. 47. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454. 48. Zhang, J., et al., Scalable Growth of High-Quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes. ACS Nano, 2014. 8(6): p. 6024-6030. 49. Zhang, F., et al., Monolayer Vanadium-Doped Tungsten Disulfide: A Room-Temperature Dilute Magnetic Semiconductor. Adv Sci (Weinh), 2020. 7(24): p. 2001174. 50. Wei, J., et al., Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Research, 2020. 13(3): p. 684-690. 51. Wang, S., et al., Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials, 2014. 26(22): p. 6371-6379. 52. Li, X., et al., Mo Concentration Controls the Morphological Transitions from Dendritic to Semicompact, and to Compact Growth of Monolayer Crystalline MoS2 on Various Substrates. ACS Appl Mater Interfaces, 2019. 11(45): p. 42751-42759. 53. Withanage, S.S., et al., Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation. ACS Omega, 2018. 3(12): p. 18943-18949. 54. Lin, Y.C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81624 | - |
| dc.description.abstract | 二維過渡金屬二硫族化物的摻雜技術是當前相當重要的課題,有效的摻雜方法將會大幅擴展此材料在各方面的應用。本實驗使用高分子輔助沉積法將金屬前驅物塗佈於藍寶石基板,並在化學氣相沉積系統中進行煅燒、預退火及硫化。使用高分子能確保金屬前驅物在基板上均勻地分散,並有效包裹金屬前驅物免於不必要的化學反應。欲摻雜過渡金屬原子時,此方法展現便利性,且摻雜原子與母相原子在溶液中均勻的混合有助於提升成功摻雜的可能性。同時,高分子輔助沉積法低成本、可塗佈於各種表面等特性,使其充分展現了應用潛力。 在本報告中,首先針對成長純二硫化鉬、二硫化鎢的實驗結果進行成長機制的討論,並探討兩種材料之間在成長上的差異。第二部分,我們基於這兩種材料的差異,在硫化前的退火階段調控氣氛,臨場改變反應中的蒸氣壓,以達到均勻的二硫化鉬鎢合金。此外,我們也將提出以高分子輔助沉積成長二硫化鉬-二硫化鎢平面異質結構以及大面積二硫化鎢的想法。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:51Z (GMT). No. of bitstreams: 1 U0001-0802202214493500.pdf: 23705267 bytes, checksum: 67587cb249efab8ab204316b4343ba57 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 前言 1 Chapter 2 過渡金屬二硫族化物的摻雜與合金 2 2.1 過渡金屬二硫族化物的摻雜 2 2.2 過渡金屬二硫族化物的合金 5 2.3 過渡金屬二硫族化物摻雜與合金的製備方法 7 2.3.1 物理氣相沉積法(Physical Vapor Deposition, PVD) 7 2.3.2 化學氣相沉積法(Chemical Vapor Deposition, CVD) 8 2.3.3 有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition, MOCVD) 9 Chapter 3 實驗方法與設備介紹 10 3.1 高分子輔助沉積法介紹 10 3.2 聚乙烯醇輔助化學氣相沉積法 13 3.2.1 基板前處理 14 3.2.2 溶液製備 14 3.2.3 低壓化學氣相沉積法 14 3.3 轉印 16 3.4 材料分析與鑑定 17 3.4.1 光學顯微鏡(Optical Microscopy, OM) 17 3.4.2 拉曼光譜(Raman Spectroscopy) 17 3.4.3 光致發光光譜(Photoluminescence Spectroscopy) 19 3.4.4 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 21 3.4.5 原子力顯微鏡(Atomic Force Microscopy, AFM) 22 3.4.6 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 23 3.4.7 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 25 Chapter 4 實驗結果與討論 27 4.1 二硫化鉬和二硫化鎢的成長 27 4.1.1 高分子溶液濃度 27 4.1.2 成長溫度 29 4.1.3 成長壓力和氣體流量 31 4.1.4 硫化氣體種類的影響 33 4.2 三元二硫化鉬鎢合金的成長 36 4.2.1 氣氛控制實驗 36 4.2.2 拉曼光譜分析 42 4.2.3 X射線光電子能譜分析 43 4.2.4 穿透式電子顯微鏡分析結果 44 Chapter 5 結論 45 REFERENCE 46 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 二硫化鉬鎢合金 | zh_TW |
| dc.subject | 二維材料摻雜 | zh_TW |
| dc.subject | 二硫化鉬-二硫化鎢平面異質結構 | zh_TW |
| dc.subject | 高分子輔助沉積法 | zh_TW |
| dc.subject | 過渡金屬二硫族化物 | zh_TW |
| dc.subject | transition metal dichalcogenides | en |
| dc.subject | molybdenum tungsten disulfide | en |
| dc.subject | MoS2-WS2 in-plane heterostructure | en |
| dc.subject | polymer-assisted deposition | en |
| dc.subject | 2D materials doping | en |
| dc.title | 以聚乙烯醇輔助化學氣相沉積法合成二硫化鉬鎢合金 | zh_TW |
| dc.title | Synthesis of MoxW1-xS2 by PVA-assisted Chemical vapor deposition | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林麗瓊(Li-Chyong Chen),陳貴賢(Kuei-Hsien Chen) | |
| dc.contributor.oralexamcommittee | #VALUE! | |
| dc.subject.keyword | 過渡金屬二硫族化物,高分子輔助沉積法,二硫化鉬-二硫化鎢平面異質結構,二維材料摻雜,二硫化鉬鎢合金, | zh_TW |
| dc.subject.keyword | transition metal dichalcogenides,2D materials doping,molybdenum tungsten disulfide,MoS2-WS2 in-plane heterostructure,polymer-assisted deposition, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU202200382 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-02-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202214493500.pdf 未授權公開取用 | 23.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
