請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韋文誠(Wen-Cheng Wei) | |
| dc.contributor.author | Wei-Cheng Li | en |
| dc.contributor.author | 李偉丞 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:45:40Z | - |
| dc.date.available | 2022-07-14 | |
| dc.date.available | 2022-11-24T03:45:40Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-14 | |
| dc.identifier.citation | [1] J. A. Lewis, “Direct Ink Writing of 3D Functional Materials”, Adv. Funct. Mater., 16 (2006) 2193-2204. [2] J. A. Lewis, J. E. Smay, J. Stuecker, and J. Cesarano, ‘‘Direct Ink Writing of Three-Dimensional Ceramic Structures’’, J. Am. Ceram. Soc., 89 (2006) 3599 -3609. [3] G. J. H. Lim, Z. Lyu, X. Zhang, J. J. Koh, Y. Zhang, C. He, S. Adams, J. Wang, and J. Ding, ‘‘Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes’’, J. Mater. Chem. A, 8 (2020) 9058-9067. [4] C. Lee, N. R. Kim, J. Koo, Y. J. Lee, and H. M. Lee, “Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics”, Nanotechnology, 26 (2015), Article 455601. [5] G. L. Draper, R. Dharmadasa, M. E. Staats, B. W. Lavery, and T. Druffel, “Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink” ACS Appl. Mater. Interfaces, 7 (2015) 16478-16485. [6] 張智淵,鋇-硼-矽-鋁-氧化物玻璃系統於水基刮刀成形的製程、分析與應用之研究,國立台灣大學材料科學與工程學研究所碩士論文,(2008)。 [7] C. Wang, M. E. H. Bhuiyan, S. Moreno, and M. Minary-Jolandan, “Direct-write printing copper-nickel (Cu/Ni) alloy with controlled composition from a single electrolyte using co-electrodeposition”, ACS Appl. Mater. Interfaces, 12 (2020) 18683-18691. [8] 林雨芊,銅基材料在固態燃料電池陽極端導電性、溫度感測及催化性質之研究,國立台灣大學材料科學與工程學研究所碩士論文(2018)。 [9] A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, and J. Xuan, “Additive Manufacturing: Unlocking the Evolution of Energy Materials”, Adv. Sci., 4 (2017) 1700187. [10] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: a review”, J. Eur. Ceram. Soc., 39[4] (2019) 661-687. [11] S. Tagliaferri, A. Panagiotopoulos, and C. Mattevi, “Direct ink writing of energy materials”, Mater. Adv., 2 (2021) 540-563. [12] J. R. Raney and J. A. Lewis, “Printing mesoscale architectures”, MRS Bulletin, 40[11] (2015) 943-950. [13] M. M. Mohebia and J. R. G. Evans, “A Drop-on-Demand Ink-jet Printer for Combinatorial Libraries and Functionally Graded Ceramics”, J. Comb. Chem., 4 (2002) 267-274. [14] A. E. Jakus, S. L. Taylor, N. R. Geisendorfer, D. C. Dunand, and R. N. Shah, “Metallic architectures from 3D-printed powder-based liquid inks”, Adv. Funct. Mater., 25[45] (2015) 6985-6995. [15] L. Rueschhoff, W. Costakis, M. Michie, J. Youngblood, and R. Trice, “Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions”, Int. J. Appl. Ceram. Technol., 13[5] (2016) 821-830. [16] J. A. Lewis, “Direct-write assembly of ceramics from colloidal inks”, Curr. Opin. Solid State Mater Sci., 6 (3) (2002) 245-250. [17] E. Casanova-Batlle, A. J. Guerra, and J. Ciurana, “Continuous Based Direct Ink Write for Tubular Cardiovascular Medical Devices”, Polymers (Basel)., 13[1] (2020), 77. [18] S. L. Voon, J. An, G. Wong, Y. Zhang, and C. K. Chua, “3D Food Printing: A Categorised Review of Inks and their Development”, Virtual Phys Prototyp, 14 (2019) 203-218. [19] V. G. Rocha, E. Saiz, I. S. Tirichenko, and E. García-Tuñón, “Direct ink writing advances in multi-material structures for a sustainable future”, J. Mater. Chem. A., 8 (2020) 15646–15657. [20] Z. Fu, M. Freihart, T. Schlordt, T. Fey, T. Kraft, P. Greil, and N. Travitzky, ‘‘Robocasting of carbon-alumina core-shell composites using co-extrusion’’, Rapid Prototyping Journal, 23[2] (2017) 423-433. [21] K. Sun, T. S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. S. Lewis, ‘‘3D Printing of Interdigitated Li-Ion Microbattery Architectures’’, Adv. Mater., 25 (2013) 4539-4543. [22] M. Kuhn, T. Napporn, and M. Meunier, ‘‘Direct-Write Microfabrication of Single-Chamber Micro Solid Oxide Fuel Cells’’, J. Micromech. Microeng., 18[1] (2007), Article 015005. [23] C. Perge, N. Taberlet, T. Gibaud, and S. Manneville, “Time dependence in large amplitude oscillatory shear: a rheoultrasonic study of fatigue dynamics in a colloidal gel”, J. Rheol., 58 (2014) 1331-1357. [24] A. Corker, H. C. H. Ng, R. J. Poole, and E. García-Tuñón, “3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials”, Soft Matter, 15 (2019) 1444 –1456. [25] R. R. Fernandes, D. E. V. Andrade, A. T. Franco, and C. O. R. Negrão, “The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material”, Journal of Rheology, 61[5] (2017) 893-903. [26] M. Dinkgreve, J. Paredes, M. M. Denn, and D. Bonn, “On different ways of measuring “the” Yield stress”, J. Non-Newton. Fluid Mech., 238 (2016) 233-241. [27] V. D. Graef, F. Depypere, M. Minnaert, and K. Dewettinck, “Chocolate yield stress as measured by oscillatory rheology”, Food Res. Int., 44 (2011) 2660-2665. [28] J. Powell, S. Assabumrungrat, and S. Blackburn, “Design of ceramic paste formulations for co-extrusion”, Powder Technol., 245 (2013) 21-27. [29] 黃怡婷,3D列印銅基合金之材料性質分析與擠出模擬,國立台灣大學碩士論文,(2018)。 [30] J. J. Benbow, “The dependence of output rate on die shape during catalyst extrusion”, Chem. Eng. Sci., 26 (1971) 1467–1473. [31] S. Y. Tang, L. Yang, G. J. Li, X. Liu, and Z. Fan, “3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control”, Addit. Manuf., 28 (2019) 546-553. [32] W. Yang, and C. Wang, “Graphene and the related conductive inks for flexible electronics”, J. Mater. Chem. C, 4 (2016) 7193-7207. [33] A. Aziz, M. B. Bazbouz, and M .E. Welland, “Double-walled carbon nanotubes ink for high-conductivity flexible electrodes”, ACS Appl. Nano Mater., 3 (2020) 9385-9392. [34] T. Minari, Y. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, A. Yaguchi, S. Tsukada, K. Kashizaki, and M. Kanehara, “Room‐temperature printing of organic thin‐film transistors with π‐junction gold nanoparticles’’, Adv. Funct. Mater., 24 (2014) 4886-4892. [35] S. Merilampi, T. Laine-Ma, and P. Ruuskanen, “The characterization of electrically conductive silver ink patterns on flexible substrates’’, Microelectron. Reliab., 49 (2009) 782-790. [36] D. Lee, D. Paeng, H. K. Park, and C. P. Grigoropoulos, “Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors”, ACS Nano, 8 (2014) 9807- 9814. [37] B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing”, Thin Solid Films, 515 (2007) 7706-7711. [38] K. Woo, Y. Kim, B. Lee, J. Kim, and J. Moon, “Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films”, ACS Appl. Mater. Interfaces, 3 (2011) 2377-2382. [39] T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Yanagida, T. Kawai, and Y. Wada, “Magnetic Cu–Ni (core–shell) nanoparticles in a one-pot reaction under microwave irradiation”, Nanoscale, 2 (2010) 515-523. [40] M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing”, J. Mater. Chem., 19 (2009) 3057-3062. [41] Y. I. Lee, K. J. Lee, Y. S. Goo, N. W. Kim, Y. Byun, J. D. Kim, B. Yoo, and Y. H. Choa, “Effect of complex agent on characteristics of copper conductive pattern formed by ink-jet printing”, Japanese J. Appl. Phys., 49 (2010), Article 086501. [42] M. K. Rahman, Z. Lu, and K. S. Kwon, “Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines” AIP Adv., 8 (2018), Article 095008. [43] B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-Step Fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle” J. Phys. Chem. C, 115 (2011) 23664-23670. [44] W. Li, Q. Sun, L. Li, J. Jiu, X. Y. Liu, M. Kanehara, T. Minari, and K. Suganuma, “The rise of conductive copper inks: challenges and perspectives”, Appl. Mater. Today, 18 (2020), Article 100451. [45] M. S. Rager, T. Aytug, G. M. Veith, and P. Joshi, “Low-thermal-budget photonic processing of highly conductive cu interconnects based on cuo nanoinks: potential for flexible printed electronics”, ACS Appl. Mater. Interfaces, 8 (2016) 2441-2448. [46] Y. T. Kwon, Y. S. Kim, Y. Lee, S. Kwon, M. Lim, Y. Song, Y. H. Choa, and W. H. Yeo, “Ultrahigh conductivity and superior interfacial adhesion of a nanostructured, photonic-sintered copper membrane for printed flexible hybrid electronics”, ACS Appl. Mater. Interfaces, 10 (2018) 44071-44079. [47] J. Liu, H. Chen, H. Ji, and M. Li, “Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated cu nanoparticles”, ACS Appl. Mater. Interfaces, 8 (2016) 33289-33298. [48] C. Y. Lee, L. H. Fang, A. Su, G. B. Jung, Y. T. Huang, and Y. C. Liang, “Application of screen printing in flexible miniature thermocouple process development”, Int. J. Electrochem. Sci., 10 (2015) 3082-3087. [49] S. Duby, B. J. Ramsey, and D. J. Harrison, “ Printed thick-flm thermocouple sensors”, Electron. Lett., 41 (2005) 312–314. [50] S. Cruz, G. Azevedo, C. Cano-Raya, N. Manninen, and J. C. Viana, “Thermoelectric response of a screen printed silver-nickel thermocouple”, Mater. Sci. Eng. B, 264 (2021). [51] G. A. Yakaboylu, R. C. Pillai, K. Sabolsky, and E. M. Sabolsky, “Fabrication and thermoelectric characterization of transition metal silicide-based composite thermocouples”, Sensors, 18 (2018). 3759–3772. [52] W. D. Kingery, H. K. Bowen, and D. R Uhlmann, Introduction to Ceramics (2nd Edition), John Wiley Sons, Inc., 1976. [53] 李廷恩,賽局理論於含有廢棄玻璃之中溫型鑄造耐火材料發展,國立台灣大學材料科學與工程學研究所碩士論文,(2019)。 [54] 吳孟輯,含廢玻璃之澆注型複材之強度改善研究,國立台灣大學材料科學與工程學研究所碩士論文(2021)。 [55] 韋文誠,「固態燃料電池技術」,上海交通大學出版社,2014。 [56] S. Honary, and F. Zahir, “Effect of zeta potential on the properties of nano drug delivery systems a review (Part 2) ”, Trop. J. Pharm. Res., 12(2013) 265–273. [57] J. J. Benbow, E. W. Oxley, and J. Bridgwater, “The extrusion mechanics of pastes—the influence of paste formulation on extrusion parameters”, Chem Eng Sci., 42[9] (1987) 2151-2162. [58] I. M. Krieger, and T. J. Dougherty, “mechanism for non-Newtonian flow in suspensions of rigid spheres”, Trans. Soc. Rheol., 3[1] (1959) 137-152. [59] R. N. Singh, “Sealing technology for solid oxide fuel cells (SOFC)”, Int. J. Appl. Ceram. Technol., 4 (2007) 134-144. [60] W. D Callister Jr, and D. G Rethwisch, “Materials Science and Engineering An Introduction 8th Edition”, (2010). [61] D. R. Lide, 'Handbook of chemistry and physics', CRC PRESS, U.S.A., (1991). [62] 周志勳,銅基材料於固態燃料電池之應用與熱熔組件開發,國立台灣大學碩士論文,(2015)。 [63] R. E. Bentley, “Irreversible thermoelectric changes in type K and type N thermocouple alloys within Nicrosil-sheathed MIMS cable”, J. Phys. D: Appl. Phys., 22[1908] (1989). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81364 | - |
| dc.description.abstract | 本研究利用擠出成型(extrusion)製程,使用將多成分氧化物漿料進行線材及圖形之2D擠出列印。使用無鹼(alkali-free)玻璃作為基板及填充劑,將複合漿料中氧化銅、氧化鎳還原後,形成金屬導線及熱電偶,分別應用於固態燃料電池之電流收集器及溫度偵測器。研究中先進行廢棄無鹼玻璃的基本性質測試,SEM+EDS與XRD分析玻璃基板之成分及晶相,再以DSC及潤濕角(wetting angle)測試基板之熱分析,並利用TMA確認其熱膨脹係數(CTE)。其次是建立漿料成分設計,氧化物漿料先進行沉降試驗及測量界面電位,找尋適當分散劑及漿料比率,並分析高固含量漿料之流變(黏彈性)行為。漿料之降伏剪切應力,均控制超過500 Pa,使漿料經擠出後可維持形狀。透過改變製程參數改善燒結行為並以四點探針法測量銅、鎳基導線的中、高溫電導率及Seebeck係數。銅基導線在700 oC下之導電率皆超過SOFC電流收集器所需之0.1×104 S·cm-1。此外製作之Cu-Cu11Ni熱電偶在650 oC時之Seebeck係數為0.059 mV/oC,代表具有良好的靈敏度。最後將印刷之導線進行高溫氧化測試並分析其氧化機制。三種線材均由介面化學反應控制,其中鎳基線材有最低的氧化速率及最高之活化能,代表鎳材比起其他兩種線材具有抵抗高溫氧化的優勢。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:45:40Z (GMT). No. of bitstreams: 1 U0001-1407202100414300.pdf: 10141560 bytes, checksum: 7076c1dbb3815eb1a42d10f02b70b4ef (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 摘要 III Abstract IV Contents VI List of Figures IX List of Tables XVI Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 Introduction of Direct Ink Writing 5 2.2 Rheology of Paste 11 2.2.1 Properties of Fluids 11 2.2.2 Rheological Behavior of Paste 12 2.2.3 Extrusion Behavior of DIW Paste 14 2.3 Applications of Printed Electronics 19 2.3.1 Conductive Cu Paste 19 2.3.2 Printed Temperature Sensor 21 Chapter 3 Experimental Procedure 24 3.1 Materials 24 3.2 Preparation and Extrusion of Pastes 24 3.3 Sintering Procedure of Extrusion Patterns 25 3.4 Property Characterization 26 3.4.1 Sedimentation Test 26 3.4.2 DSC Analysis 27 3.4.3 SEM Analysis 27 3.4.4 Wetting Angle Measurement 28 3.4.5 X-ray Diffraction Analysis 28 3.4.6 Rheology Test 28 3.4.7 Thermomechanical Analysis 29 3.4.8 Zeta-potential Measurement 29 3.4.9 Electrical Conductivity Measurement 30 3.4.10 Thermopotential Measurement 30 3.4.11 Oxidation Resistance Test 31 Chapter 4 Results and Discussion 36 4.1 Properties of GC Glass 36 4.1.1 Element Analysis of GC Glass 36 4.1.2 Thermal Properties of GC Glass 37 4.1.3 Wetting Behavior of GC Glass 38 4.1.4 Sintering Behavior of GC pellet 39 4.2 Rheology of Extrusion Paste 53 4.2.1 Dispersion Properties 53 4.2.2 Rheology of Extruded Paste 54 4.2.3 Working Window of Paste Extrusion 57 4.3 Properties of Extruded Patterns 74 4.3.1 Sintering Behavior of Wires 74 4.3.2 Improvement of Sintering Schedule 75 4.3.3 Conductivity of Sintered Wires 77 4.3.4 Seebeck Coefficient of Extruded Thermocouples 80 4.4 Long-term Test of Extruded Samples 104 4.4.1 Microstructure of Oxide Layer of Testing Wires 104 4.4.2 Oxidation Analysis of Extruded Wires 105 4.4.3 Activation Energy of Oxidation Test 105 4.4.4 Long-term Test of Extruded Thermocouple 107 Chapter 5 Conclusions 117 Reference 120 Appendix 129 | |
| dc.language.iso | en | |
| dc.subject | 導電性 | zh_TW |
| dc.subject | 熱電位 | zh_TW |
| dc.subject | 銅 | zh_TW |
| dc.subject | 鎳 | zh_TW |
| dc.subject | 溫度感測器 | zh_TW |
| dc.subject | 電流收集器 | zh_TW |
| dc.subject | temperature sensor | en |
| dc.subject | conductivity | en |
| dc.subject | Cu | en |
| dc.subject | Ni | en |
| dc.subject | current collector | en |
| dc.subject | thermopotential | en |
| dc.title | 以2D列印法製作銅、鎳基導線及其溫度感測器之研究 | zh_TW |
| dc.title | Study on Fabrication of Copper and Nickel-based Wires and Temperature Sensors by 2D Printing | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝宗霖(Hsin-Tsai Liu),趙基揚(Chih-Yang Tseng) | |
| dc.subject.keyword | 電流收集器,鎳,銅,導電性,熱電位,溫度感測器, | zh_TW |
| dc.subject.keyword | current collector,Ni,Cu,conductivity,thermopotential,temperature sensor, | en |
| dc.relation.page | 136 | |
| dc.identifier.doi | 10.6342/NTU202101452 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1407202100414300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
