請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Yu-Lin Li | en |
| dc.contributor.author | 李侑霖 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:43:28Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-24T03:43:28Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-20 | |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. [2] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218. [3] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. [4] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom 65(12) (2013) 1759-1771. [5] B. Hammer, K. Jacobsen, V. Milman, M. Payne, Stacking fault energies in aluminium, Journal of Physics: Condensed Matter 4(50) (1992) 10453. [6] C. Carter, S. Holmes, The stacking-fault energy of nickel, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 35(5) (1977) 1161-1172. [7] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia 61(7) (2013) 2628-2638. [8] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140. [9] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706. [10] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765. [11] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074. [12] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048. [13] M. Beyramali Kivy, M. Asle Zaeem, Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys, Scripta Materialia 139 (2017) 83-86. [14] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633-648. [15] J.-W. Yeh, Recent progress in high-entropy alloys, European Journal of Control - EUR J CONTROL 31 (2006) 633-648. [16] H. Gleiter, The formation of annealing twins, Acta metallurgica 17(12) (1969) 1421-1428. [17] D. McKie, C. McKie, Essentials of Crystallography, Blackwell Scientific1986. [18] H.K.D.H. Bhadeshia, Worked Examples in the Geometry of Crystals, Institute of Metals1987. [19] H. Gleiter, The formation of annealing twins, Acta Metallurgica 17 (1969). [20] N.B. S. Dash, An investigate of the origin and growth of annealing twins Aacta Metallurgica 11 (1963). [21] L.E.M. M. A. Meyers, A model for the formaton of annealing twins in FCC metals and alloys, Acta Metallurgica 26 (1978). [22] 朱彥霖, 單晶相石墨烯製備與特性分析, 光電科學與工程學系, 國立中央大學, 2014, pp. 1-77. [23] C.S.P. S. Mahjan, M. A. Imam, B. B. Rath, Formation of annealing twins in f.c.c. crystals, Acta Metallurgica 45 (1997) 2633-2638. [24] B. Rath, M. Imam, C. Pande, Nucleation and growth of twin interfaces in fcc metals and alloys, Mater. Phys. Mech 1(20) (2000) 0. [25] L. Hsin-Yi, Studies on nanostructure for annealing twin in α-brass and transformation twin in high-carbonic martensite, Department of Materials Science and Engineering, National Taiwan University, 2010. [26] M. Schneider, E. George, T. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy, International Journal of Plasticity 124 (2020) 155-169. [27] K. Ming, X. Bi, J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, International Journal of Plasticity 113 (2019) 255-268. [28] T.-F. Chung, P.-J. Chen, C.-L. Tai, P.-H. Chiu, Y.-S. Lin, C.-N. Hsiao, C.-Y. Chen, S.-H. Wang, J.-W. Yeh, W.-S. Lee, Investigation of nanotwins in the bimodal-structured Fe22Co22Ni20Cr22Mn14 alloy subjected to high-strain-rate deformation at cryogenic temperatures, Materials Characterization 170 (2020) 110667. [29] T. Blewitt, R. Coltman, J. Redman, Low‐temperature deformation of copper single crystals, Journal of Applied Physics 28(6) (1957) 651-660. [30] E. Cerreta, S. Mahajan, Formation of deformation twins in TiAl, Acta materialia 49(18) (2001) 3803-3809. [31] J.W. Christian, S. Mahajan, Deformation twinning, Progress in materials science 39(1-2) (1995) 1-157. [32] S. Mahajan, G. Chin, Comments on deformation twinning in silver-and copper-alloy crystals, Scripta Metallurgica 9(8) (1975) 815-817. [33] Y. Zhu, J. Narayan, J. Hirth, S. Mahajan, X. Wu, X. Liao, Formation of single and multiple deformation twins in nanocrystalline fcc metals, Acta materialia 57(13) (2009) 3763-3770. [34] O. Bouaziz, S. Allain, Y. Estrin, Effect of pre-strain at elevated temperature on strain hardening of twinning-induced plasticity steels, Scripta Materialia 62(9) (2010) 713-715. [35] O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Materialia 58(6) (2008) 484-487. [36] S. Mahajan, D. Williams, Deformation twinning in metals and alloys, International Metallurgical Reviews 18(2) (1973) 43-61. [37] L. Remy, Kinetics of fcc deformation twinning and its relationship to stress-strain behaviour, Acta Metallurgica 26(3) (1978) 443-451. [38] Y.T. Zhu, X.Z. Liao, X.L. Wu, Deformation twinning in nanocrystalline materials, Progress in Materials Science 57(1) (2012) 1-62. [39] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia 118 (2016) 152-163. [40] J.A. Venables, Deformation twinning in face-centred cubic metals, 6(63) (1961) 379-396 %J Philosophical Magazine. [41] J. Miao, C. Slone, T. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. Pharr, M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Materialia 132 (2017) 35-48. [42] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Materialia 81 (2014) 428-441. [43] S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics 93 (2018) 269-273. [44] M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, Q. Xue, Shear localization in dynamic deformation of materials: microstructural evolution and self-organization, Materials Science and Engineering: A 317(1-2) (2001) 204-225. [45] S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang, Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Materials Science and Engineering: A 712 (2018) 603-607. [46] X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion, Journal of Applied Physics 96(1) (2004) 636-640. [47] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia 61(15) (2013) 5743-5755. [48] Y. Zhu, X. Liao, X. Wu, Deformation twinning in nanocrystalline materials, Progress in Materials Science 57(1) (2012) 1-62. [49] Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy, Materials Research Letters 6(4) (2018) 236-243. [50] S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy, Scripta Materialia 108 (2015) 44-47. [51] Y. Zhang, Y. Zhuang, A. Hu, J.-J. Kai, C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys, Scripta Materialia 130 (2017) 96-99. [52] J.D. Campbell, W.G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel, Philosophical Magazine 21(169) (2006) 63-82. [53] J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, H.S. Kim, Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A 719 (2018) 155-163. [54] M.S. Christian JW, Deformation twinning, Progress in Materials Science 39 (1995). [55] W. Huo, H. Zhou, F. Fang, X. Hu, Z. Xie, J. Jiang, Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys, Materials Science and Engineering: A 689 (2017) 366-369. [56] X. Lv, J. Zhang, H. Harada, Twin-dislocation and twin–twin interactions during cyclic deformation of a nickel-base single crystal TMS-82 superalloy, International journal of fatigue 66 (2014) 246-251. [57] Y. Sun, P. Hazzledine, J. Christian, Intersections of deformation twins in TiAl: I. Experimental observations, Philosophical Magazine A 68(3) (1993) 471-494. [58] Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nature communications 5(1) (2014) 1-8. [59] S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Materials Science and Engineering: A 387 (2004) 158-162. [60] Y. Tsai, C. Lin, W.-S. Lee, C. Huang, J. Yang, Mechanical behavior and microstructural evolution of nanostructured bainite under high-strain rate deformation by Hopkinson bar, Scripta Materialia 115 (2016) 46-51. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81328 | - |
| dc.description.abstract | "本研究將在室溫(25℃)進行70%冷輥軋後的FeCoNiCr中熵合金進行850℃持溫1小時的退火熱處理以得到完全再結晶(Fully recrystallized)之顯微結構,接著分別在室溫(25℃)以及低溫(-150℃)下進行應變速率為10-3 s-1的間斷拉伸實驗,以觀察不同溫度下缺陷顯微結構演變的過程。之後同樣在室溫(25℃)以及低溫(-150℃)下進行應變速率為9000 s-1的霍普金森快速撞擊實驗,並與間斷拉伸實驗結果做比較,以觀察不同應變速率下缺陷分布以及形貌上的差異,主要透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)來進行缺陷顯微結構的分析。 由實驗結果可以得知不論是在25℃還是-150℃,FeCoNiCr中熵合金在塑性變形初期主要都是透過差排滑移(Dislocation glide)來產生變形,直到應力達到啟動雙晶所需的臨界應力值,才會開始有變形雙晶(Deformation twin)的形成。在應變速率為10-3 s-1的實驗條件下,FeCoNiCr中熵合金在25℃下即便在真實應變量為38%也就是在抗拉強度的應變階段下,僅能觀察到一組變形雙晶(Single variant of deformation twin)的形成,推測是因為應力不足所致;在-150℃下則大約在真實應變量為12%之應變階段即可觀察到兩組變形雙晶(Two variants of deformation twin)的形成。而在應變速率為9000 s-1的實驗條件下,FeCoNiCr中熵合金在25℃且真實應變量為28.8%之應變階段下,即可觀察到兩組變形雙晶的形成,而在-150℃且真實應變量為24%之應變階段下,可以在許多奈米退火雙晶(Annealing nanotwin)內部觀察到密集分布的變形雙晶,而這些密集分布的變形雙晶其厚度大部分皆小於2 nm。最後在雙晶面符合Edge-on configuration的條件下進行變形雙晶寬度(厚度)之統計,由結果可以得知不論是在25℃還是-150℃,變形雙晶之平均寬度皆隨著應變量的增加而些微下降。且若是在相同真實應變量之條件下,不論是在25℃還是-150℃下FeCoNiCr中熵合金在經過快速撞擊後相較於慢速拉伸所生成的變形雙晶皆具有較細之平均寬度。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:43:28Z (GMT). No. of bitstreams: 1 U0001-1907202115183800.pdf: 13895285 bytes, checksum: 45edec6fa654f3104359c514bcddb7aa (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xv LIST OF EQUATIONS xvi Chapter 1 前言 1 Chapter 2 文獻回顧 2 2.1 高熵合金及中熵合金 2 2.1.1 高熵合金及中熵合金之簡介 2 2.1.2 高熵合金及中熵合金之定義 4 2.2 雙晶 6 2.2.1 雙晶介紹 6 2.2.2 雙晶之方位關係 8 2.2.3 退火雙晶 9 2.2.4 變形雙晶 14 2.2.5 變形雙晶之影響因素 16 2.2.6 變形雙晶之交互作用 24 Chapter 3 實驗設計及步驟 28 3.1 實驗流程 28 3.1.1 實驗材料 29 3.1.2 軋延及熱處理 30 3.1.3 室溫及低溫間斷拉伸實驗 31 3.1.4 室溫及低溫霍普金森快速撞擊實驗 31 3.2 實驗儀器與設備 32 3.2.1 輥軋機 32 3.2.2 MTS Landmark伺服油壓式動態材料試驗機 32 3.2.3 霍普金森桿 32 3.2.4 X光繞射儀 33 3.2.5 電子背向散射繞射儀 34 3.2.6 穿透式電子顯微鏡 35 Chapter 4 結果與討論 37 4.1 拉伸及撞擊前微結構分析 37 4.1.1 均質化後EBSD顯微結構分析 37 4.1.2 冷輥軋後EBSD及TEM顯微結構分析 39 4.1.3 退火後EBSD及TEM顯微結構分析 43 4.2 室溫及低溫間斷拉伸實驗 49 4.2.1 機械性質與X光繞射儀分析 49 4.2.2 室溫下EBSD及TEM顯微結構分析 53 4.2.3 低溫下EBSD及TEM顯微結構分析 63 4.3 室溫及低溫霍普金森快速撞擊實驗 78 4.3.1 機械性質與X光繞射儀分析 78 4.3.2 室溫及低溫下EBSD顯微結構分析 81 4.3.3 室溫及低溫下TEM顯微結構分析 84 Chapter 5 結論 93 Chapter 6 未來工作 95 REFERENCE 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 變形雙晶 | zh_TW |
| dc.subject | FeCoNiCr中熵合金 | zh_TW |
| dc.subject | 間斷拉伸實驗 | zh_TW |
| dc.subject | 霍普金森快速撞擊實驗 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 奈米退火雙晶 | zh_TW |
| dc.subject | Transmission electron microscope (TEM) | en |
| dc.subject | Deformation twin | en |
| dc.subject | Annealing nanotwin | en |
| dc.subject | FeCoNiCr medium-entropy alloy | en |
| dc.subject | Interrupted tensile test | en |
| dc.subject | Split Hopkinson pressure bar (SHPB) test | en |
| dc.title | FeCoNiCr中熵合金在室溫及低溫變形下缺陷顯微結構演變之研究 | zh_TW |
| dc.title | Microstructure Evolution of FeCoNiCr Medium-entropy Alloy during Deformation at Room Temperature and Cryogenic Temperature | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王星豪(Hsin-Tsai Liu),陳志遠(Chih-Yang Tseng) | |
| dc.subject.keyword | FeCoNiCr中熵合金,間斷拉伸實驗,霍普金森快速撞擊實驗,穿透式電子顯微鏡,奈米退火雙晶,變形雙晶, | zh_TW |
| dc.subject.keyword | FeCoNiCr medium-entropy alloy,Interrupted tensile test,Split Hopkinson pressure bar (SHPB) test,Transmission electron microscope (TEM),Annealing nanotwin,Deformation twin, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202101569 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1907202115183800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
