請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Zhe-Ren Yang) | |
| dc.contributor.author | Ming-Yi Cheng | en |
| dc.contributor.author | 程銘奕 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:39:27Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-24T03:39:27Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-28 | |
| dc.identifier.citation | [1] D.E. Elena Pereloma, Phase transformations in steels: Volume 1: Fundamentals and diffusion-controlled transformations. [2] H.K.D.H. Bhadeshia, Worked examples in the Geometry of Crystals. [3] W. F.Smith, Structure and Properties of Engineering Alloys. [4] H. Sato, S.J.A.m. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy, 57(6) (2009) 1931-1937. [5] Cristian, J.W., The Mechanism of Phase Transformations in Crystalline solids [6] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A.J.A.m. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, 60(20) (2012) 7265-7274. [7] S. Morito, X. Huang, T. Furuhara, T. Maki, N.J.A.M. Hansen, The morphology and crystallography of lath martensite in alloy steels, 54(19) (2006) 5323-5331. [8] P. Yan, Z. Liu, H. Bao, Y. Weng, W.J.M.S. Liu, E. A, Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel, 597 (2014) 148-156. [9] C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, K.J.M.S. Sun, E. A, Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel, 534 (2012) 339-346. [10] S. Morito, H. Saito, T. Ogawa, T. Furuhara, T.J.I.i. Maki, Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels, 45(1) (2005) 91-94. [11] C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, Z.J.M. Yan, Design, Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time, 36 (2012) 220-226. [12]K. Zhang, P. Liu, W. Li, F.-C. Ma, Y.-H.J.A.M.S. Rong, Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching–Partitioning–Tempering Steels, 31(6) (2018) 659-667. [13] H. Kitahara, R. Ueji, N. Tsuji, Y.J.A.m. Minamino, Crystallographic features of lath martensite in low-carbon steel, 54(5) (2006) 1279-1288. [14]S. Morito, H. Tanaka, R. Konishi, T. Furuhara, Maki, T.J.A. materialia, The morphology and crystallography of lath martensite in Fe-C alloys, 51(6) (2003) 1789-1799. [15]E. Galindo-Nava, P.J.A.M. Rivera-Díaz-del-Castillo, A model for the microstructure behaviour and strength evolution in lath martensite, 98 (2015) 81-93. [16]S. Morito, H. Yoshida, T. Maki, X.J.M.S. Huang, E. A, Effect of block size on the strength of lath martensite in low carbon steels, 438 (2006) 237-240. [17]H. Hoseiny, F. Caballero, B. Högman, D. San Martin, C. Capdevila, L.-G. Nordh, H.-O.J.J.o.M.S. Andrén, The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel, 47(8) (2012) 3613-3620. [18]B. Kim, E. Boucard, T. Sourmail, D. San Martín, N. Gey, P.J.A.m. Rivera-Díaz-del-Castillo, The influence of silicon in tempered martensite: Understanding the microstructure–properties relationship in 0.5–0.6 wt.% C steels, 68 (2014) 169-178. [19]B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M.J.A.M. Thuvander, Microstructures and hardness of as-quenched martensites (0.1–0.5% C), 59(14) (2011) 5845-5858. [20]P. Kelly, A. Jostsons, R.J.A.m.e.m. Blake, The orientation relationship between lath martensite and austenite in low carbon, low alloy steels, 38(6) (1990) 1075-1081. [21]P.L. Mangonon, G.J.M.t. Thomas, The martensite phases in 304 stainless steel, 1(6) (1970) 1577-1586. [22] M. Tsai, C. Chiou, J. Du, J.J.M.S. Yang, E. A, Phase transformation in AISI 410 stainless steel, 332(1-2) (2002) 1-10. [23] L. Sorgi, Two-view geometry estimation using the rodrigues rotation formula, 2011 18th IEEE International Conference on Image Processing, IEEE, 2011, pp. 1009-1012. [24] C. Kinney, K. Pytlewski, A. Khachaturyan, J.J.A.m. Morris Jr, The microstructure of lath martensite in quenched 9Ni steel, 69 (2014) 372-385. [25] Y. Mine, K. Hirashita, H. Takashima, M. Matsuda, K.J.M.S. Takashima, E. A, Micro-tension behaviour of lath martensite structures of carbon steel, 560 (2013) 535-544. [26] C. Du, J. Hoefnagels, R. Vaes, M.J.S.M. Geers, Plasticity of lath martensite by sliding of substructure boundaries, 120 (2016) 37-40. [27]A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y.J.M.S. Higo, E. A, Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test, 527(29-30) (2010) 7538-7544. [28]M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, T.J.A.m. Koseki, Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation, 57(18) (2009) 5283-5291. [29] H. Järvinen, M. Isakov, T. Nyyssönen, M. Järvenpää, P.J.M.S. Peura, E. A, The effect of initial microstructure on the final properties of press hardened 22MnB5 steels, 676 (2016) 109-120. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81263 | - |
| dc.description.abstract | 本研究使用CBMM公司所提供之含碳量為0.22wt%的低碳鋼22MnB5,來進行板條狀麻田散鐵的微結構分析。首先將材料放進高溫爐內,以1200°C的溫度均質化三天,再將其切割成直徑5mm,長度10mm的圓柱形式片進行熱處理。熱處理流程為將試片分別升溫至不同的沃斯田鐵化溫度(1000°C及1200°C)持溫五分鐘,再以極快的冷卻速度(50°C/s 及100°C/s)冷卻至室溫,以確保沃斯田鐵得以完全形成麻田散鐵,並透過熱膨脹儀所得之溫度對試片升長量的曲線圖,知道材料的Ms溫度約落在350°C左右。熱處理完成後,利用OM、SEM、EBSD、TEM對板條狀麻田散鐵進行觀察,再輔以各項軟體進行後續的顯微結構及方位關係的分析。 由OM所拍攝的照片可以清楚的看到原沃斯田鐵的晶界,利用截線法可得原沃斯田鐵的晶粒大小,無論冷卻速度為50°C/s 還是100°C/s,沃斯田鐵化溫度1000°C持溫五分鐘的試片其平均晶粒大小在7到10μm之間,而沃斯田鐵化溫度1200°C持溫五分鐘的試片其平均晶粒大小大約在60μm左右。由SEM的實驗結果搭配pole figure,可以分析出一個原沃斯田鐵晶粒裡所有block及sub-block的晶體方位關係。本實驗利用EBSD技術找到了三種特殊晶帶軸(zone axis) 下的原沃斯田鐵晶粒,分別為〈111〉γ、〈110〉γ、〈100〉γ,並在這三軸下分別選了一個較大(~150μm)及一個較小(~25μm)的原沃斯田鐵晶粒來進行麻田散鐵的晶體結構分析及block的厚度統計。晶體結構分析上吻合晶體幾何學所得之結果;而block厚度統計實驗結果發現,無論是哪一種大小的原沃斯田鐵晶粒,在〈110〉γ、〈100〉γ下其block的厚度都差不多,然而在〈111〉γ下觀察到的block特別厚,因此推測其形貌更接近為長條形的盤狀(plate)。由OM、SEM、EBSD所得之照片,搭配KAM,可清楚看到板條狀麻田散鐵的粗化行為,搭配錯位角度(misorientation angle)分析,可知粗化發生在鄰近的兩個相同變體(variant)間。由TEM可觀察到粗化的板條狀麻田散鐵裡有雪明碳鐵的析出,亦可利用明、暗場找到相互穿透雙晶(Inter-penetrating twin)的結構,由照片分析推測此雙晶結構發生在鄰近的兩個互為雙晶結構的變體間。另外,藉由TEM所拍攝之照片配合軟體Digital micrograph,可以對未粗化的板條狀麻田散鐵進行厚度統計。統計結果顯示無論在哪個參數條件下,其厚度都十分接近,配合硬度測試,也發現結果都相當接近。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:39:27Z (GMT). No. of bitstreams: 1 U0001-2707202102300500.pdf: 16929662 bytes, checksum: 547fc7c11827e321d9b4bf0137ad8965 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要……………………………………………………………………………………………………Ⅰ Abstract………………………………………………………………………………………Ⅲ 目錄……………………………………………………………………………………………………Ⅴ 表目錄………………………………………………………………………………………………Ⅵ 圖目錄……………………………………………………………………………………………Ⅶ 前言…………………………………………………………………………………1 文獻回顧…………………………………………………………………………2 2.1 麻田散鐵相變化………………………………………………………………………2 2.1.1 麻田散鐵如何形成……………………………………………………2 2.1.2 麻田散鐵的晶體結構…………………………………………………2 2.1.3 麻田散鐵的相變態理論………………………………………………2 2.1.4 麻田散鐵的分類………………………………………………………3 2.2 板條狀麻田散鐵之顯微結構……………………………………………….8 2.2.1 板條狀麻田散鐵的階層結構…………………………………………8 2.2.2 不同因素對板條狀麻田散鐵階層結構的影響………………………9 2.3 板條狀麻田散鐵之晶體方位關係………………………………………16 研究方法 3.1 實驗材料…………………………………………………………………28 3.2 熱處理步驟………………………………………………………………28 3.3 使用儀器與試片準備……………………………………………………29 3.4 分析軟體…………………………………………………………………31 結果與討論……………………………………………………………………33 4.1 原沃斯田鐵結構…………………………………………………………33 4.1.1 原沃斯田鐵晶粒之光學金相………………………………………33 4.1.2 原沃斯田鐵晶粒平均大小及Ms溫度……………………………33 4.2 包體、塊體及次塊體結構………………………………………………37 4.2.1 不同原沃斯田鐵晶帶軸下之包體、塊體及次塊體EBSD影像…37 (a) 沃斯田鐵化溫度1200°C………………………………………37 〈100〉_γ……………………………………………………37 〈110〉_γ……………………………………………………45 〈111〉_γ……………………………………………………54 (b) 沃斯田鐵化溫度1000°C 〈100〉_γ……………………………………………………64 〈110〉_γ……………………………………………………65 〈111〉_γ……………………………………………………67 4.2.2 不同原沃斯田鐵晶帶軸下之塊體厚度統計………………………69 〈100〉_γ…………………………………………………………71 〈110〉_γ…………………………………………………………73 〈111〉_γ…………………………………………………………75 4.2.3 塊體內的變體結構 4.3 板條與粗化板條結構……………………………………………………80 4.3.1 粗化板條結構……………………………………………………80 4.3.2 板條結構與其厚度統計……………………………………………85 4.4 相互穿透雙晶結構………………………………………………………89 結論……………………………………………………………………………97 未來工作………………………………………………………………………99 參考資料………………………………………………………………………100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 背向散射電子繞射技術 | zh_TW |
| dc.subject | 方位關係 | zh_TW |
| dc.subject | 板條狀麻田散鐵 | zh_TW |
| dc.subject | 相互穿透雙晶 | zh_TW |
| dc.subject | EBSD | en |
| dc.subject | inter-penetrating twin | en |
| dc.subject | orientation relationship | en |
| dc.subject | lath martensite | en |
| dc.title | 22MnB5板條狀麻田散鐵的晶體方位關係與顯微組織研究 | zh_TW |
| dc.title | Structures of Lath Martensite in 22MnB5 Low Carbon Steel | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王星豪(Hsin-Tsai Liu),陳志遠(Chih-Yang Tseng) | |
| dc.subject.keyword | 板條狀麻田散鐵,方位關係,相互穿透雙晶,背向散射電子繞射技術, | zh_TW |
| dc.subject.keyword | lath martensite,orientation relationship,inter-penetrating twin,EBSD, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202101784 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202102300500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
