請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81214完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Yow-Shiuan Liaw | en |
| dc.contributor.author | 廖宥瑄 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:36:37Z | - |
| dc.date.available | 2021-08-11 | |
| dc.date.available | 2022-11-24T03:36:37Z | - |
| dc.date.copyright | 2021-08-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | [1] E. O. Hall, 'The Deformation and Ageing of Mild Steel: III Discussion of Results,' Proc. Phys. Soc. Lond, 1951. vol. 64, pp. 747–753. [2] N. J. Petch, 'The Cleavage Strength of Polycrystals,' Journal of the Iron and Steel Institute, 1953. vol. 174, pp. 25-28. [3] V. M. Segal, 'Materials processing by simple shear,' materials Science and Engineering: A, 1995. vol. 197, no. 2, pp. 157-164. [4] R. Z. Valiev and T. G. Langdon, 'Principles of equal-channel angular pressing as a processing tool for grain refinement,' Progress in Materials Science, 2006. vol. 51, no. 7, pp. 881-981. [5] D. J. S. Zenji Horita, Minoru Furukawa, Minoru Nemoto, Ruslan Z. Valiev, Terence G. Langdon 'An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy,' Journal of Materials Research, 1996. vol. 11, no. 8, pp. 1880 - 1890. [6] A. Zhilyaev and T. Langdon, 'Using high-pressure torsion for metal processing: Fundamentals and applications,' Progress in Materials Science, 2008. vol. 53, no. 6, pp. 893-979. [7] N. T. Y. Saito, H. Utsunomiya, T. Sakai, R. G. Hong, 'Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,' Scripta Materialia, 1998. vol. 39, no. 9, pp. 1221-1227. [8] Y. T. Z. J. Y. Huang, H. Jiang, T. C. Lowe, 'Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening,' Acta Materialia, 2001. vol. 49, no. 9, pp. 1497-1505. [9] G. J. Raab, R. Z. Valiev, T. C. Lowe, and Y. T. Zhu, 'Continuous processing of ultrafine grained Al by ECAP–Conform,' Materials Science and Engineering: A, 2004. vol. 382, no. 1-2, pp. 30-34. [10] A. Rosochowski, L. Olejnik, and M. W. Richert, 'Double-Billet Incremental ECAP,' Materials Science Forum, 2008. vol. 584-586, pp. 139-144. [11] L. S. Tóth, R. Lapovok, A. Hasani, and C. Gu, 'Non-equal channel angular pressing of aluminum alloy,' Scripta Materialia, 2009. vol. 61, no. 12, pp. 1121-1124. [12] H. J. C. Lin H. K., 'High strain rate and/or low temperature superplasticity in AZ31 Mg alloys processed by simple high-ratio extrusion methods,' Materials Transactions, 2002. vol. 43, no. 10, pp. 2424 - 2432. [13] K. T. Aizawa T., Nakano H., 'Synthesis of Mg2Ni alloy by bulk mechanical alloying,' Journal of Alloys and Compounds, 1999. vol. 291, no. 1-2, pp. 248 - 253. [14] Q. Chen et al., 'Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing,' Journal of Materials Science Technology, 2017. vol. 33, no. 7, pp. 690-697. [15] I. Balasundar, K. R. Ravi, and T. Raghu, 'Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process,' Materials Science and Engineering: A, 2013. vol. 583, pp. 114-122. [16] B. Binesh and M. Aghaie-Khafri, 'RUE-based semi-solid processing: Microstructure evolution and effective parameters,' Materials Design, 2016. vol. 95, pp. 268-286. [17] W. Gao, J. Xu, J. Teng, and Z. Lu, 'Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion,' Journal of Materials Research, 2016. vol. 31, no. 16, pp. 2506-2515. [18] Y. Xu, L. Hu, J. Jia, and B. Xu, 'Microstructure evolution of a SIMA processed AZ91D magnesium alloy based on repetitive upsetting-extrusion (RUE) process,' Materials Characterization, 2016. vol. 118, pp. 309-323. [19] L. Zaharia, R. Comaneci, R. Chelariu, and D. Luca, 'A new severe plastic deformation method by repetitive extrusion and upsetting,' Materials Science and Engineering: A, 2014. vol. 595, pp. 135-142. [20] L. A. Reza Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, fourth ed. Cengage Learning, 2009. [21] Z. H. Megumi Kawasaki, Terence G. Langdon 'Microstructural evolution in high purity aluminum processed by ECAP,' Materials Science and Engineering: A, 2009. vol. 524, no. 1-2, pp. 143-150. [22] M. H. F.J. Humphreys, Recrystallization and Related Annealing Phenomena, second edition ed. Elsevier, 2004. [23] M. A. Meyers, A. Mishra, and D. J. Benson, 'Mechanical properties of nanocrystalline materials,' Progress in Materials Science, 2006. vol. 51, no. 4, pp. 427-556. [24] P. V. Liddicoat et al., 'Nanostructural hierarchy increases the strength of aluminium alloys,' Nat Commun, Sep 7 2010. vol. 1, p. 63. [25] E. Ma and T. Zhu, 'Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals,' Materials Today, 2017. vol. 20, no. 6, pp. 323-331. [26] S. H. Wu et al., 'Hierarchical structure in Al-Cu alloys to promote strength/ductility synergy,' Scripta Materialia, 2021. vol. 202, [27] M. Zha, Y. Li, R. H. Mathiesen, R. Bjørge, and H. J. Roven, 'High ductility bulk nanostructured Al–Mg binary alloy processed by equal channel angular pressing and inter-pass annealing,' Scripta Materialia, 2015. vol. 105, pp. 22-25. [28] K. Lu, 'Stabilizing nanostructures in metals using grain and twin boundary architectures,' Nature Reviews Materials, 2016. vol. 1, [29] V. R. Olaf Engler, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, second ed. CRC Press, 2010. [30] U. o. Cambridge, 'Representing Texture,' ed, 2004. [31] H.-J. Bunge, Texture Analysis in Materials Science, 1st ed. Butterworth-Heinemann, 1982. [32] K. Yoshida, T. Ishizaka, M. Kuroda, and S. Ikawa, 'The effects of texture on formability of aluminum alloy sheets,' Acta Materialia, 2007. vol. 55, no. 13, pp. 4499-4506. [33] E. Hirosawa, 'Fiber Textures of Extruded Aluminum Alloy Rod,' Transactions of the Japan Institute of Metals, 1964. vol. 5, no. 4, pp. 235-237. [34] R. W. C. K.V Gow, 'Textures in extruded aluminium,' Acta Metallurgica, 1953. vol. 1, no. 2, pp. 238-241. [35] H. INOUE, 'Texture of extruded aluminum alloys,' Journal of Japan Institute of Light Metals, 2002. vol. 52, no. 11, pp. 524-529. [36] Y. K. Tsuneo TAKAHASHI, 'On the texture of aluminum rods extruded under various conditions,' Journal of Japan Institute of Light Metals, 1968. vol. 18, no. 2, pp. 81-87. [37] T. P. K Zhang, C O Paulsen, K Marthinsen, B Holmedal, A Segatori, 'Recrystallization behaviour of AA6063 extrusions,' presented at the IOP Conference Series: Materials Science and Engineering, Denmark, 2015. [38] D. NyungLee, 'The evolution of recrystallization textures from deformation textures,' Scripta Metallurgica et Materialia, 1995. vol. 32, no. 10, pp. 1689-1694. [39] K. Okayasu and H. Fukutomi, 'Texture Formation in AA5182 Aluminum Alloy by Hot Extrusion,' Materials Science Forum, 2013. vol. 753, pp. 497-500. [40] L. Z. D. Shan, Microstructure Evolution in Metal Forming Processes, Metals and Surface Engineering: Woodhead Publishing, 2012, pp. 267-297. [41] M. G. S. U. F. Kocks, A. D. Rollett, 'The Influence of Texture on Strain Hardening,' in International Conference On The Strength Of Metals and Alloys, Finland, 1989, vol. 1, pp. 25-34. [42] L. H. C. J. Y. Uan, T. S. Lui, 'A study of the texture hardening of pure aluminum and AlAl33Ni eutectic alloy with [111] fiber texture,' Scripta Materialia, 1997. vol. 36, no. 12, pp. 1391-1395. [43] A. Bois-Brochu, C. Blais, F. A. T. Goma, D. Larouche, J. Boselli, and M. Brochu, 'Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties,' Materials Science and Engineering: A, 2014. vol. 597, pp. 62-69. [44] George E. Totten and D. S. MacKenzie, Eds. Handbook of Aluminum (Volume 1 Physical Metallurgy and Processes). Marcel Dekker, Inc., 2003. [45] J.-F. Nie, 'Physical Metallurgy of Light Alloys,' in Physical Metallurgy, 2014, pp. 2009-2156. [46] J. G. Kaufman, Introduction to Aluminum Alloys and Tempers: ASM International, 2000, pp. 9-22. [47] I. J. Polmear, 'Aluminium Alloys – A Century of Age Hardening,' presented at the International Conference on Aluminium Alloys, 2004. [48] Charles R. Simcoe and I. Watseka, 'The Discovery of Strong Aluminum,' ADVANCED MATERIALS PROCESSES, 2011. [49] R. G. W. P. D. Merica, H. Scott, Heat Treatment of Duralumin. Scientific Papers of the Bureau of Standards, 1919, pp. 271-316. [50] G. C. Smith, 'Age Hardening of Metals,' Progress in Metal Physics, 1949. vol. 1, pp. 163-192. [51] C. Q. C. B.C Wei, Z Huang, Y.G Zhang, 'Aging behavior of Li containing Al–Zn–Mg–Cu alloys,' Materials Science and Engineering: A, 2000. vol. 280, no. 1, pp. 161-167. [52] S. F. Fang, M. P. Wang, and M. Song, 'An approach for the aging process optimization of Al–Zn–Mg–Cu series alloys,' Materials Design, 2009. vol. 30, no. 7, pp. 2460-2467. [53] X. Li et al., 'Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy,' Science in China Series E: Technological Sciences, 2009. vol. 52, no. 1, pp. 67-71. [54] G. Silva, B. Rivolta, R. Gerosa, and U. Derudi, 'Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C,' Journal of Materials Engineering and Performance, 2012. vol. 22, no. 1, pp. 210-214. [55] R.-x. Yang, Z.-y. Liu, P.-y. Ying, J.-l. Li, L.-h. Lin, and S.-m. Zeng, 'Multistage-aging process effect on formation of GP zones and mechanical properties in Al–Zn–Mg–Cu alloy,' Transactions of Nonferrous Metals Society of China, 2016. vol. 26, no. 5, pp. 1183-1190. [56] A. Azarniya, A. K. Taheri, and K. K. Taheri, 'Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective,' Journal of Alloys and Compounds, 2019. vol. 781, pp. 945-983. [57] Y. Fan, X. Tang, S. Wang, and B. Chen, 'Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments,' Metals and Materials International, 2020. [58] J. R. Davis, Aluminum and Aluminum Alloys: ASM International, 2001, pp. 351-416. [59] A. Dupasquier et al., 'Hardening nanostructures in an AlZnMg alloy,' Philosophical Magazine, 2007. vol. 87, no. 22, pp. 3297-3323. [60] R. S. Mishra and M. Komarasamy, 'Physical Metallurgy of 7XXX Alloys,' in Friction Stir Welding of High Strength 7XXX Aluminum Alloys, 2016, pp. 5-14. [61] W. X. Shu et al., 'Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloys,' Materials Science and Engineering: A, 2016. vol. 657, pp. 269-283. [62] J.-T. Liu, Y.-A. Zhang, X.-W. Li, Z.-H. Li, B.-Q. Xiong, and J.-S. Zhang, 'Phases and microstructures of high Zn-containing Al–Zn–Mg–Cu alloys,' Rare Metals, 2014. vol. 35, no. 5, pp. 380-384. [63] J. Tang et al., 'Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation,' Vacuum, 2021. vol. 184, p. 109941. [64] Y. B. A. Deschamps, 'Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy,' materials Science and Engineering: A, 1998. vol. 251, no. 1-2, pp. 200-207. [65] F. De Geuser et al., 'Grain boundary segregation and precipitation in an Al-Zn-Mg-Cu alloy,' MATEC Web of Conferences, 2020. vol. 326, [66] Y. Lang, Y. Cai, H. Cui, and J. Zhang, 'Effect of strain-induced precipitation on the low angle grain boundary in AA7050 aluminum alloy,' Materials Design, 2011. vol. 32, no. 8-9, pp. 4241-4246. [67] J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, and J. Zhang, 'Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing,' Journal of Alloys and Compounds, 2017. vol. 716, pp. 220-230. [68] C. Cao, D. Zhang, X. Wang, Q. Ma, L. Zhuang, and J. Zhang, 'Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt.%) alloy,' Materials Characterization, 2016. vol. 122, pp. 177-182. [69] S. Tian, J. Li, J. Zhang, Z. Wulabieke, and D. Lv, 'Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy,' Journal of Materials Research and Technology, 2019. vol. 8, no. 5, pp. 4130-4140. [70] G. B. Teng et al., 'Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging,' Materials Science and Engineering: A, 2018. vol. 713, pp. 61-66. [71] C. Shi and X. G. Chen, 'Effect of Zr addition on hot deformation behavior and microstructural evolution of AA7150 aluminum alloy,' Materials Science and Engineering: A, 2014. vol. 596, pp. 183-193. [72] W. L. BAO Zi-cheng, ZHANG Yun-ya, DENG Yun-lai, 'Effects of precipitation of Al 3Zr particles on microstructures, textures and properties of Al-Zn-Mg-Cu alloy hot-rolled plate,' Chinese Journal of Nonferrous Metals, 2011. vol. 21, no. 8, [73] G. Li et al., 'Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys,' Materials Science and Engineering: A, 2014. vol. 617, pp. 219-227. [74] I. K. H. Löffler, J. Lendvai 'Decomposition processes in Al-Zn-Mg alloys,' Journal of Materials Science, 1983. vol. 18, pp. pages2215–2240. [75] P. A. D. Godard, E. Aeby-Gautier, G. Lapasset, 'Precipitation sequences during quenching of the AA 7010 alloy,' Acta Materialia, 2002. vol. 50, no. 9, pp. 2319-2329. [76] J. G. L. K. BERG, V. HANSEN, 'GP-ZONES IN Al–Zn–Mg ALLOYS AND THEIR ROLE INARTIFICIAL AGING,' Acta Materialia, 2001. vol. 49, no. 17, pp. 3443-3451. [77] G. Sha and A. Cerezo, 'Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050),' Acta Materialia, 2004. vol. 52, no. 15, pp. 4503-4516. [78] P. Schloth, A. Deschamps, C. A. Gandin, and J. M. Drezet, 'Modeling of GP(I) zone formation during quench in an industrial AA7449 75 mm thick plate,' Materials Design, 2016. vol. 112, pp. 46-57. [79] M. K. G. Jürgens, H. Löffler, 'On the kinetics of the growth of Guinier–Preston zones in Al-Zn-Mg alloys,' physica status solidi (a), 1974. vol. 21, [80] J. Buha, R. N. Lumley, and A. G. Crosky, 'Secondary ageing in an aluminium alloy 7050,' Materials Science and Engineering: A, 2008. vol. 492, no. 1-2, pp. 1-10. [81] Y.-Y. Li, L. Kovarik, P. J. Phillips, Y.-F. Hsu, W.-H. Wang, and M. J. Mills, 'High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy,' Philosophical Magazine Letters, 2012. vol. 92, no. 4, pp. 166-178. [82] A. GUINIER, 'Structure of Age-Hardened Aluminium-Copper Alloys,' Nature, 1938. vol. 142, pp. 569–570. [83] G. D. Preston, 'The diffraction of X-rays by age-hardening aluminium copper alloys,' Proceedings of The Royal Society A, 1938. vol. 167, no. 931, [84] R. B. Nicholson and J. Nutting, 'Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy,' The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 2006. vol. 3, no. 29, pp. 531-535. [85] Y. Chang, 'Crystal Structure and Nucleation Behavior of {111} Precipitates in an Al-3.9Cu-0.5Mg-0.5Ag Alloy,' Ph.D, Materials Science and Engineering, Carnegie Mellon University, 1993. [86] D. E. L. R. J. Rioja, 'The early stages of GP zone formation in naturally aged Al-4 wt pct cu alloys,' Metallurgical Transactions A, 1977. vol. 8, pp. 1257–1261. [87] Q. B. Y. A. K. Mukhopadhyay, S. R. Singh, 'The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy,' Acta Metallurgica et Materialia, 1994. vol. 42, no. 9, pp. 3083-3091. [88] S. K. Maloney, Hono, K, Polmear, I J, Ringer, S P, 'The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy,' Scripta Materialia, 1999. vol. 41, no. 10, [89] G. Sha and A. Cerezo, 'Characterization of precipitates in an aged 7xxx series Al alloy,' Surface and Interface Analysis, 2004. vol. 36, no. 56, pp. 564-568. [90] R. B. N. G.W Lorimer, 'Further results on the nucleation of precipitates in the Al-Zn-Mg system,' Acta Metallurgica, 1966. vol. 14, no. 8, pp. 1009-1013. [91] A. S. R Ferragut, A Tolley, 'Microstructural evolution of 7012 alloy during the early stages of artificial ageing,' 1999. vol. 47, no. 17, pp. 4355-4364. [92] C. Wolverton, 'Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys,' Acta Materialia, 2001. vol. 49, no. 16, pp. 3129-3142. [93] C. J. S. J. Gjønnes, 'An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy,' 1970. vol. 18, no. 8, pp. 881-890. [94] N. A. G. L. F. Mondolfo, D. W. Levinson 'Structural Changes During the Aging in An Al-Mg-Zn Alloy,' The Journal of The Minerals, 1956. pp. 1378–1385. [95] J. Z. Liu et al., 'Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy,' Scripta Materialia, 2010. vol. 63, no. 11, pp. 1061-1064. [96] X. B. Yang et al., 'A transmission electron microscopy study of microscopic causes for localized-corrosion morphology variations in the AA7055 Al alloy,' Journal of Materials Science Technology, 2018. vol. 34, no. 10, pp. 1719-1729. [97] T.-F. Chung et al., 'Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy,' Acta Materialia, 2018. vol. 149, pp. 377-387. [98] W. Yang, S. Ji, M. Wang, and Z. Li, 'Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants,' Journal of Alloys and Compounds, 2014. vol. 610, pp. 623-629. [99] Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, and L. Cao, 'Co-precipitation of T′ and η′ phase in Al-Zn-Mg-Cu alloys,' Materials Characterization, 2020. vol. 169, [100] C. S. AJ De Ardo, 'A structural investigation of multiple aging of Al-7 wt pct Zn-2.3 wt pct Mg,' Metallurgical Transactions, 1973. [101] W. L. H. Peter Degischer, Annemarie Zahra, Christian Y. Zahra, 'Decomposition Processes in an Al-5% Zn-1% Mg Alloy Part Il: Electronmicroscopic Investigations,' International Journal of Materials Research, 1980. vol. 71, no. 4, pp. 231-238. [102] S. K. Maloney, I. J. Polmear, and S. P. Ringer, 'Characteristics of η' and η4 Precipitates in Ag-Modified Al-Zn-Mg Alloys,' Materials Science Forum, 2002. vol. 396-402, pp. 631-636. [103] M. Nicolas, 'Precipitation evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments and in the heat-affected zone of welded joints,' Ph.D, Material chemistry, Institut National Polytechnique de Grenoble - INPG, 2002. [104] X. Xu, J. Zheng, Z. Li, R. Luo, and B. Chen, 'Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation,' Materials Science and Engineering: A, 2017. vol. 691, pp. 60-70. [105] T.-F. Chung et al., 'An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy,' Acta Materialia, 2019. vol. 174, pp. 351-368. [106] A. Bendo et al., 'Atomic scale HAADF-STEM study of η′ and η 1 phases in peak-aged Al–Zn–Mg alloys,' Journal of Materials Science, 2018. vol. 53, no. 6, pp. 4598-4611. [107] Y. Zhang, M. Weyland, B. Milkereit, M. Reich, and P. A. Rometsch, 'Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy,' Sci Rep, Mar 16 2016. vol. 6, p. 23109. [108] S. Liu et al., 'Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy,' Materials Design, 2017. vol. 132, pp. 119-128. [109] M. Zhang et al., 'Effect of hot deformation on microstructure and quenching-induced precipitation behavior of Al-Zn-Mg-Cu alloy,' Materials Characterization, 2021. vol. 172, [110] S.-H. Lee et al., 'Precipitation strengthening in naturally aged Al–Zn–Mg–Cu alloy,' Materials Science and Engineering: A, 2021. vol. 803, [111] I. D.-L. Adrian Luis Garcia-Garcia, Luis Lopez-Jimenez, J.D. Oscar Barceinas-Sanchez, 'Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM,' Materials Characterization, 2014. vol. 87, pp. 116-124. [112] A. Ghosh, M. Ghosh, A. H. Seikh, and N. H. Alharthi, 'Phase transformation and dispersoid evolution for Al-Zn-Mg-Cu alloy containing Sn during homogenisation,' Journal of Materials Research and Technology, 2020. vol. 9, no. 1, pp. 1-12. [113] P. Hofer, H. Cerjak, and P. Warbichler, 'Quantification of precipitates in a 10%Cr steel using TEM and EFTEM,' Materials Science and Technology, 2013. vol. 16, no. 10, pp. 1221-1225. [114] G. M. J Majimel, M.J Casanove, D Schuster, A Denquin, G Lapasset, 'Investigation of the evolution of hardening precipitates during thermal exposure or creep of a 2650 aluminium alloy,' Scripta Materialia, 2002. vol. 46, no. 2, pp. 113-119. [115] S. C. Jacumasso, J. d. P. Martins, and A. L. M. d. Carvalho, 'Analysis of precipitate density of an aluminium alloy by TEM and AFM,' REM - International Engineering Journal, 2016. vol. 69, no. 4, pp. 451-457. [116] D. P. Yong Zhang, Benjamin Milkereit, Nigel Kirby, Marco J.Starink, Paul A.Rometsch, 'Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering,' Materials Design, 2018. vol. 142, pp. 259-267. [117] Y.-C. Huang, C.-S. Tsao, C. Lin, Y.-C. Lai, S.-K. Wu, and C.-H. Chen, 'Evolution of Guinier-Preston zones in cold-rolled Al0.2CoCrFeNi high-entropy alloy studied by synchrotron small-angle X-ray scattering,' Materials Science and Engineering: A, 2020. vol. 769, [118] C.-S. Tsao et al., 'Phase transformation and precipitation of an Al–Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering,' Journal of Alloys and Compounds, 2013. vol. 579, pp. 138-146. [119] A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut, 'Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy,' Materials Science and Engineering: A, 2009. vol. 501, no. 1-2, pp. 133-139. [120] L. Liu, L. Boldon, M. Urquhart, and X. Wang, 'Small and Wide Angle X-ray Scattering studies of biological macromolecules in solution,' J Vis Exp, Jan 8 2013. no. 71, [121] Y. Buranova et al., 'Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,' Acta Materialia, 2017. vol. 124, pp. 210-224. [122] L. Liu, J.-T. Jiang, B. Zhang, W.-Z. Shao, and L. Zhen, 'Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing,' Journal of Materials Science Technology, 2019. vol. 35, no. 6, pp. 962-971. [123] O. N. Senkov, M. R. Shagiev, S. V. Senkova, and D. B. Miracle, 'Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties,' Acta Materialia, 2008. vol. 56, no. 15, pp. 3723-3738. [124] X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, and J. Chen, 'Influence of solution treatment on microstructures and mechanical properties of a naturally-aged Al–27Zn–1.5Mg–1.2Cu–0.08Zr aluminum alloy,' Materials Science and Engineering: A, 2021. vol. 802, [125] H. Y. Hunsicker, 'Development of Al-Zn-Mg-Cu Alloys for Aircraft,' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1976. vol. 282, pp. 359-376. [126] R. Ø. J. Hjelen, E. Nes, 'On the origin of recrystallization textures in aluminium,' Acta Metallurgica et Materialia, 1991. vol. 39, no. 7, pp. 1377-1404. [127] I. L. Dillamore and H. Katoh, 'The Mechanisms of Recrystallization in Cubic Metals with Particular Reference to Their Orientation-Dependence,' Metal Science, 2013. vol. 8, no. 1, pp. 73-83. [128] R. S. H. E. Vatne, E. Nes, 'Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy,' Acta Materialia, 1996. vol. 44, no. 11, pp. 4447-4462. [129] George E. Totten and D. S. MacKenzie, 'Handbook of Aluminium: Volume 2: Alloy Production and Materials Manufacturing,' Marcel Dekker Inc, 2003. pp. 213-214. [130] Y. Chen, C. Y. Liu, B. Zhang, F. C. Qin, and Y. F. Hou, 'Precipitation behavior and mechanical properties of Al–Zn–Mg alloy with high Zn concentration,' Journal of Alloys and Compounds, 2020. vol. 825, [131] Y. Nasedkina, X. Sauvage, E. V. Bobruk, M. Y. Murashkin, R. Z. Valiev, and N. A. Enikeev, 'Mechanisms of precipitation induced by large strains in the Al-Cu system,' Journal of Alloys and Compounds, 2017. vol. 710, pp. 736-747. [132] F. De Geuser et al., 'Correlation between TEM, SAXS and DSC to investigate the influence of SPD on precipitation mechanisms of an Al-Zn-Mg-Cu alloy,' MATEC Web of Conferences, 2020. vol. 326, [133] A. Duchaussoy, X. Sauvage, A. Deschamps, F. De Geuser, G. Renou, and Z. Horita, 'Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior,' Materialia, 2021. vol. 15, [134] A. Deschamps, F. De Geuser, Z. Horita, S. Lee, and G. Renou, 'Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy,' Acta Materialia, 2014. vol. 66, pp. 105-117. [135] M. Fourmeau, C. D. Marioara, T. Børvik, A. Benallal, and O. S. Hopperstad, 'A study of the influence of precipitate-free zones on the strain localization and failure of the aluminium alloy AA7075-T651,' Philosophical Magazine, 2015. vol. 95, no. 28-30, pp. 3278-3304. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81214 | - |
| dc.description.abstract | "本實驗使用由傑出材料所提供高強度Al-Zn-Mg-Cu系列之鑄材A800。採用兩面擠製之製程,透過嚴重塑性變形的方式,希望能得到類似於超細晶的晶粒細化功效。同時,經過擠型的材料,晶粒會產生特定方向的分布取向稱為織構。織構的產生會帶來織構強化的效應。而由高變型量所帶來的內部缺陷,被認為會促進析出物的生成以及相變,增加其析出強化的效果。因此,以此製程為中心,探討此製程在各階段熱處理,對材料機械性質的影響,以及造成此機械性質的顯微結構與析出物。研究以拉伸試驗及硬度來分析材料之機械性質。以電子背向散射繞射 (Electron Back-Scattered Diffraction, EBSD)來進行晶粒大小以及織構強度的分析,分別討論細晶強化以及織構強化對機械性質的影響。再以穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)對材料內部析出物的種類進行判斷。最後,搭配小角度X光散射儀(Small-angle X-ray scattering, SAXS)來計算析出物的大小,以及其相對體積分率和相對表面積,討論其對機械性質的影響。 研究分為三部分進行討論。第一部分討論熱擠製對機械性質的影響。隨著擠製量的增加,晶粒能有效細化,並產生<111>//ED及<100>//ED纖維織構。且變形時所帶來的大量缺陷能促使析出物析出,且擠製使析出物尺寸較小,增加析出強化的效果。第二部分討論熱擠製後經過T4X熱處理對機械性質的影響。從EBSD結果可發現晶粒細化效果仍然存在,且<111>//ED纖維織構達到飽和。從TEM及SAXS結果可以發現,經過熱處理,原本明顯的擠製促進析出效果大幅降低,可能是源自於缺陷的消失,然而還是能觀察到些微擠製刺激析出相變的現象,因此析出強化效果經擠製後表現較好。同時,一種近期才發現的Y相析出物可以於擠製後被觀察到,此析出物具有高長寬比因而被認為是很好的析出強化析出物。第三部分討論熱擠製後經過T6熱處理對機械性質的影響。結果可以發現,擠製後晶粒仍保有細化效果,而織構相比與T4X熱處理已無變化。此階段基地內皆佈滿η'與η析出物,η種類主要為η1與η2。從析出物的平均尺寸及相對體積分率仍能發現擠製促進析出物析出成長相變的現象。然而η析出物的轉變會使析出強化效果較差。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:36:37Z (GMT). No. of bitstreams: 1 U0001-3007202116321800.pdf: 15882354 bytes, checksum: a5c35de8b6185c21e7f082f387e09f95 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | " 口試委員會審定書 I 致謝 II 中文摘要 IV ABSTRACT V CONTENTS VII LIST OF FIGURES X LIST OF TABLES XX LIST OF EQUATION XXI CHAPTER 1 前言 1 CHAPTER 2 文獻回顧 3 2.1 嚴重塑性變形 (SEVERE PLASTIC DEFORMATION, SPD) 3 2.1.1 反覆鐓粗擠製(RUE)製程介紹 4 2.1.2 熱變形的鋁合金結構變化 5 2.1.3 機械性質的影響 6 2.2 織構 (TEXTURE) 7 2.2.1 極圖 (Pole Figure)及反極圖 (Inverse Pole Figure) 7 2.2.2 FCC 擠製織構介紹 10 2.3 鋁合金之發展 13 2.3.1 鋁合金介紹 13 2.3.2 鋁合金時效處理介紹 14 2.3.3 鋁合金中元素添加之影響 20 2.4 鋁合金析出物 23 2.4.1 析出物之介紹及鑑定 23 2.4.2 析出物之量化 35 CHAPTER 3 實驗設計及步驟 40 3.1 實驗流程 40 3.1.1 實驗材料 40 3.1.2 製程及熱處理設計 40 3.2 實驗儀器與設備 45 3.2.1 拉伸試驗機 (Tensile Tester) 45 3.2.2 電子背向散射繞射 (Electron Back-Scattered Diffraction, EBSD) 45 3.2.3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 46 3.2.4 光學顯微鏡 (Optical Microscope) 47 3.2.5 HV 顯微硬度計 (Vickers Hardness Tester) 47 3.2.6 差示掃描量熱儀(Differential scanning calorimetry, DSC) 47 3.2.7 小角度X光散射儀(Small-angle X-ray scattering, SAXS) 48 CHAPTER 4 結果與討論 49 4.1 兩面擠製不經過時效處理 49 4.1.1 OM結果觀察及分析 49 4.1.2 EBSD顯微結構與織構觀察及分析 50 4.1.3 TEM顯微結構觀察與分析 57 4.1.4 SAXS實驗結果與分析 62 4.1.5 DSC實驗結果與分析 70 4.1.6 機械性質之影響 72 4.1.7 小結 75 4.2 兩面擠製經過T4X熱處理後之影響 76 4.2.1 OM結果觀察及分析 76 4.2.2 EBSD顯微結構與織構觀察及分析 77 4.2.3 TEM顯微結構觀察與分析 82 4.2.4 SAXS實驗結果與分析 91 4.2.5 機械性質之影響 98 4.2.6 小結 102 4.3 兩面擠製經過T6熱處理後之影響 104 4.3.1 EBSD顯微結構與織構觀察及分析 104 4.3.2 TEM顯微結構觀察與分析 110 4.3.3 SAXS實驗結果與分析 118 4.3.4 人工時效過程硬度變化結果 124 4.3.5 機械性質之影響 125 4.3.6 小結 128 CHAPTER 5 結論 130 CHAPTER 6 未來工作 133 REFERENCES 135" | |
| dc.language.iso | zh-TW | |
| dc.subject | 嚴重塑性變形 | zh_TW |
| dc.subject | T4X熱處理 | zh_TW |
| dc.subject | 纖維織構 | zh_TW |
| dc.subject | 晶粒細化 | zh_TW |
| dc.subject | 反覆鐓粗擠製 | zh_TW |
| dc.subject | T6熱處理 | zh_TW |
| dc.subject | 鋁合金 | zh_TW |
| dc.subject | 小角度散射 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 析出強化 | zh_TW |
| dc.subject | Grain-boundary strengthening | en |
| dc.subject | Small Angle X-ray Scattering (SAXS) | en |
| dc.subject | Transmission Electron Microscope (TEM) | en |
| dc.subject | T6 heat treatment | en |
| dc.subject | T4X heat treatment | en |
| dc.subject | Precipitate strengthening | en |
| dc.subject | Texture strengthening | en |
| dc.subject | Aluminium alloys | en |
| dc.subject | Severe Plastic Deformation | en |
| dc.title | 兩面擠製對A800鋁合金之顯微結構及析出物之影響 | zh_TW |
| dc.title | The Effects of Two-Side Extrusion on Microstructure and Precipitation of A800 Aluminum Alloy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志遠(Hsin-Tsai Liu),洪衛朋(Chih-Yang Tseng) | |
| dc.subject.keyword | 鋁合金,嚴重塑性變形,反覆鐓粗擠製,晶粒細化,纖維織構,T4X熱處理,T6熱處理,析出強化,穿透式電子顯微鏡,小角度散射, | zh_TW |
| dc.subject.keyword | Aluminium alloys,Severe Plastic Deformation,Grain-boundary strengthening,Texture strengthening,Precipitate strengthening,T4X heat treatment,T6 heat treatment,Transmission Electron Microscope (TEM),Small Angle X-ray Scattering (SAXS), | en |
| dc.relation.page | 146 | |
| dc.identifier.doi | 10.6342/NTU202101939 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202116321800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 15.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
