請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許少瑜 | |
| dc.contributor.author | Hung-Yen Lin | en |
| dc.contributor.author | 林宏彥 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:06:35Z | - |
| dc.date.available | 2019-07-03 | |
| dc.date.available | 2021-05-11T05:06:35Z | - |
| dc.date.copyright | 2019-07-03 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-03-07 | |
| dc.identifier.citation | [1] Bear, J. (1979) Hydraulics of Groundwater. McGraw-Hill, New York.
[2] Blaschke, A.P., Steiner, K.H., Schmalfuss, R., Gutknecht, D. and Sengschmitt, D. (2003) Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. International Review of Hydrobiology 88(3-4), 397-413. [3] Bouwer, H. and Maddock, T.I. (1997) Making sense of the interactions between groundwater and streamflow: Lessons for water masters and adjudicators. Rivers 6, 19-31. [4] Braaten, R. and Gates, G. (2003) Groundwater-surface water interaction in inland New South Wales: a scoping study. Water Science and Technology 48, 215-224. [5] Brunner, P., Cook, P.G. and Simmons, C.T. (2009) Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research 45. [6] Covino, T.P. and McGlynn, B.L. (2007) Stream gains and losses across a mountain-to-valley transition: Impacts on watershed hydrology and stream water chemistry. Water Resources Research 43. [7] Darcy, H. (1856) Les fontaines publiques de la ville de Dijon: exposition et application, Victor Dalmont. [8] Dillon, P.J. and Liggett, J.A. (1983) An Ephemeral Stream-Aquifer Interaction-Model. Water Resources Research 19(3), 621-626. [9] Doble, R., Brunner, P., McCallum, J. and Cook, P.G. (2012) An Analysis of River Bank Slope and Unsaturated Flow Effects on Bank Storage. Ground Water 50(1), 77-86. [10] Fox, G.A. and Durnford, D.S. (2003) Unsaturated hyporheic zone flow in stream/aquifer conjunctive systems. Advances in Water Resources 26(9), 989-1000. [11] Galli, J. (1992) Analysis of urban BMP performance and longevity in Prince George's County, Maryland 92711, Prince George’s County Department of Environmental Resources, USA. [12] Hubbert, M.K. (1956) Darcy's law and the field equations of the flow of underground fluids. Transactions, American Institute of Mining and Metallurgical Engineering 207, 222-239. [13] Irvine, D. (2010) Investigating the Influence of Clogging Layer Heterogeneity on Groundwaer-: Surface Water Interactions for Disconnected Losing Streams, Flinders University of South Australia, School of the Environment. [14] Joppen, M., Sulser, P., Blaser, P. and Kohler, A.J.W.M.O., Mitteilung (1992) Einfluß der Stauregelung auf Grundwasser. Wasserbau München–Obernach, Mitteilung Nr. (73), 365-375. [15] Kalbus, E., Reinstorf, F. and Schirmer, M. (2006) Measuring methods for groundwater - surface water interactions: a review. Hydrology and Earth System Sciences 10, 873-887. [16] Lisle, T.E. (1989) Sediment Transport and Resulting Deposition in Spawning Gravels, North Coastal California. Water Resources Research 25(6), 1303-1319. [17] Nozi, T., Mase, T. and Murata, K. (1999) Maintenance and management aspect of stormwater infiltration system. In: Proceedings of the Eighth International Conference on Urban Storm Drainage, Sydney, Australia, vol. 3, 1497-1503. [18] Osman, Y.Z. and Bruen, M.P. (2002) Modelling stream-aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. Journal of Hydrology 264(1-4), 69-86. [19] Peterson, D.M. and Wilson, J.L. (1988) Variably saturated flow between streams and aquifers. Tech. Completion Rep. 233, New Mexico Water Resources Research Institute, Socorro. [20] Raimbault, G., Nadji, D. and Gauthier, C. (1999) Stormwater infiltration and porous material clogging. In: Proceedings of the Eighth International Conference on Urban Storm Drainage, Sydney, Australia, vol. 2, 1016-1024. [21] Richards, L.A. (1931) Capillary conduction of liquids through porous mediums. Physics, 1, 318-333. [22] Riviere, A., Goncalves, J., Jost, A. and Font, M. (2014) Experimental and numerical assessment of transient stream-aquifer exchange during disconnection. Journal of Hydrology 517, 574-583. [23] Siriwardene, N.R., Deletic, A. and Fletcher, T.D. (2007) Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research 41(7), 1433-1440. [24] Sophocleous, M. (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10(1), 52-67. [25] van Genuchten, M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, 892-898. [26] Wald, J., Kron, W., Buck, W. and Plate, E.J.I.-A.p. (1986) Generation of storm runoff in an area with a high groundwater table. Conjunctive Water Use (Proceedings of the Budapest Symposium, July 1986), 97-109. [27] Warnaars, E., Larsen, A.V., Jacobsen, P. and Mikkelsen, P.S. (1999) Hydrologic behaviour of stormwater infiltration trenches in a central urban area during 2(3)/(4) years of operation. Water Science and Technology 39(2), 217-224. [28] Winter, T.C., Harvey, J.W., Franke, O.L. and Alley, W.M. (1998) Ground water and surface water: a single resource, Circular 1139, USGS, Denver, Colorado. [29] Zaslavsky, D. (1963) Theory of unsaturated flow in a non-uniform soil profile. Soil Science Society of America Journal 97, 400-410. [30] 萬鑫森 (1987) 基礎土壤物理學, 國立編譯館. [31] 蔡義誌 (2008) 不飽和土壤水力傳導度與介質孔隙分佈關係之研究, 國立中興大學水土保持學系博士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/811 | - |
| dc.description.abstract | 台灣山區河川大多坡陡流急,河川在枯水期時常發生斷流,對於河川內的生物環境系統造成顯著的影響。一般而言認為,山區河川底床多由粗顆粒所組成,具有較大的入滲率為影響山區河川斷流的主要因素之一。然而許多研究指出,河川中的土砂顆粒會隨沉降作用於河床上形成一層具有較低水力傳導度的阻水層,影響河川的入滲率以及地下水的流動情況。因此,本研究透過入滲儀實驗以及COMSOL Mutiphysics數值模擬的方式推估河川在有無阻水層時的入滲率變化以及對於地下水流況的影響。研究結果顯示,當一具有阻水層的河川受人為抽水或自然氣候乾旱等因素影響而使地下水位下降時,會使該河川系統達到Disconnection的狀態,即河川下的含水層內出現非飽和的區域。此時的入滲率會同時受到水力傳導度以及水力梯度變化的影響,而趨近於一穩定的入滲率。此外,模擬結果也發現阻水層的形成會使地下水的流況發生改變,對於地下水的停留時間產生顯著的影響。 | zh_TW |
| dc.description.abstract | In Taiwan, steep mountain streams could be cut off during dry seasons, which impacts the rivers’ ecosystem. The stream cut-off can be related to the high streambed percolation since the streambed usually consists of coarse sand with high permeability. Studies have shown that the sediment deposited on the streambed forming a thin layer with lower hydraulic conductivity, which is referred to as the “clogging layer”. The layer significantly affects the infiltration or percolation rate beneath the stream bed. In this study, we quantified the effects of the clogging layer on the infiltration rate and the groundwater flow pattern beneath the stream bed by numerical simulations and lysimeter experiments. Our simulations showed that a lowering of the groundwater table turned connected surface water-groundwater into disconnected when the streambed covered by a clogging layer. Once the surface water and groundwater was disconnected, an unsaturated zone appeared in the aquifer beneath the streambed, and the infiltration rate reached to the maximum rate. Our simulation also showed that the occurrence of the clogging layer significantly changed the patterns of groundwater flow beneath the stream bed. It can influence substantially on the residence times of groundwater and the transport of nutrients between surface and subsurface water. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:06:35Z (GMT). No. of bitstreams: 1 ntu-108-R05622024-1.pdf: 7524508 bytes, checksum: 767f23d034f7bd25e6ea00a7efc73b24 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xiv 第1章、 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 文獻回顧 2 1.4 研究架構 6 第2章、 相關理論 8 2.1 達西定律(Darcy’s law) 8 2.2 理查方程式(Richards’ equation) 9 2.3 Disconnection狀態發生的非飽和條件式 11 第3章、 材料與方法 14 3.1 實驗設備 14 3.1.1 時域反射儀(Time Domain Reflectometry, TDR) 14 3.1.2 土壤水分張力計 15 3.1.3 葉片式流量計 15 3.1.4 渦流式流量計 16 3.1.5 水位計 17 3.2 粒徑分布實驗 18 3.3 水力傳導度實驗 21 3.4 保水曲線實驗 23 3.5 入滲儀單層實驗 27 3.6 入滲儀雙層實驗 28 第4章、 模擬方法 30 4.1 COMSOL Multiphysics 30 4.1.1 COMSOL Multiphysics軟體 30 4.1.2 有限元素法 31 4.2 入滲儀單層模擬 32 4.3 入滲儀雙層模擬 33 4.4 簡易河段單層模擬 33 4.5 簡易河段雙層模擬 34 第5章、 結果與討論 35 5.1 入滲儀單層實驗與模擬結果 35 5.1.1 入滲儀單層實驗 35 5.1.2 入滲儀單層模擬 37 5.2 入滲儀雙層實驗與模擬結果 42 5.2.1 入滲儀雙層實驗 42 5.2.2 入滲儀雙層模擬 47 5.3 簡易河段模擬 57 5.3.1 簡易河段單層模擬 57 5.3.2 簡易河段雙層模擬 63 5.4 入滲儀單雙層實驗與模擬比較討論 68 5.4.1 入滲率比較 68 5.4.2 壓力比較 72 5.4.3 驗證Disconnection狀態的發生 75 5.5 簡易河段模擬單雙層模擬比較討論 77 5.5.1 入滲率比較 77 5.5.2 平均停留時間比較 78 第6章、 結論與建議 81 6.1 研究結論 81 6.2 未來建議 82 第7章、 參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | COMSOL | zh_TW |
| dc.subject | 地下水 | zh_TW |
| dc.subject | 入滲 | zh_TW |
| dc.subject | 非飽和 | zh_TW |
| dc.subject | 含水層 | zh_TW |
| dc.subject | 阻水層 | zh_TW |
| dc.subject | 入滲儀 | zh_TW |
| dc.subject | Infiltration | en |
| dc.subject | Aquifer | en |
| dc.subject | Unsaturated zone | en |
| dc.subject | Groundwater | en |
| dc.subject | COMSOL | en |
| dc.subject | Lysimeter | en |
| dc.subject | Clogging layer | en |
| dc.title | 利用實驗與數值方法研究河川底床阻水層對入滲率及非飽和區域發展的影響 | zh_TW |
| dc.title | The Impact of Clogging Layer on Groundwater Flow Pattern beneath Streambed by Using Experimental and Numerical Methods | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余化龍,邱永嘉,胡明哲 | |
| dc.subject.keyword | 地下水,入滲,非飽和,含水層,阻水層,入滲儀,COMSOL, | zh_TW |
| dc.subject.keyword | Groundwater,Infiltration,Unsaturated zone,Aquifer,Clogging layer,Lysimeter,COMSOL, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201900641 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-03-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 7.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
