請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Sook Yin Chong | en |
| dc.contributor.author | 張淑穎 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:29:03Z | - |
| dc.date.available | 2021-08-23 | |
| dc.date.available | 2022-11-24T03:29:03Z | - |
| dc.date.copyright | 2021-08-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-19 | |
| dc.identifier.citation | Abdel-Banat, B. M.; Nonklang, S.; Hoshida, H.; Akada, R., Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 2010, 27 (1), 29-39. Alagoz, M.; Kherad, N., Advance genome editing technologies in the treatment of human diseases: CRISPR therapy. Int. J. Mol. Med. 2020, 46 (2), 521-534. Arias, C. A. D.; Marques, D. d. A. V.; Malpiedi, L. P.; Maranhão, A. Q.; Parra, D. A. S.; Converti, A.; Junior, A. P., Cultivation of Pichia pastoris carrying the scFv anti LDL (−) antibody fragment. Effect of preculture carbon source. Braz. J. Microbiol. 2017, 48 (3), 419-426. Banat, I. M.; Nigam, P.; Marchant, R., Isolation of thermotolerant, fermentative yeasts growing at 52 C and producing ethanol at 45 C and 50 C. World J. Microbiol. Biotechnol. 1992, 8 (3), 259-263. Bendrioua, L.; Smedh, M.; Almquist, J.; Cvijovic, M.; Jirstrand, M.; Goksor, M.; Adiels, C. B.; Hohmann, S., Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J. Biol. Chem. 2014, 289 (18), 12863-75. Berthels, N. J.; Otero, R. R. C.; Bauer, F. F.; Pretorius, I. S.; Thevelein, J. M., Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbiol. Biotechnol. 2008, 77 (5), 1083-1091. Brachmann, C. B.; Davies, A.; Cost, G. J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J. D., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR‐mediated gene disruption and other applications. Yeast 1998, 14 (2), 115-132. Cai, P.; Gao, J.; Zhou, Y., CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb. Cell Fact. 2019, 18 (1), 63. Cheon, Y.; Kim, J.-S.; Park, J.-B.; Heo, P.; Lim, J. H.; Jung, G. Y.; Seo, J.-H.; Park, J. H.; Koo, H. M.; Cho, K. M., A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J. Biotechnol. 2014, 182, 30-36. Cheung, T.; Ko, J.; Lee, J.; Manpreet, T., The effect of temperature on the growth rate of Saccharomyces cerevisiae. EXPED 2014, 4. Chiu, C.-H.; Wang, R.; Lee, C.-C.; Lo, Y.-C.; Lu, T.-J., Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J. Agric. Food Chem. 2013, 61 (29), 7127-7134. Choo, J. H.; Han, C.; Kim, J.-Y.; Kang, H. A., Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus. Biotechnol. Lett. 2014, 36 (10), 2059-2067. Chun, L.; Li-Mei, L.; Feng, S.; Zhi-Min, W.; Hai-Ru, H.; Li, D.; Jiang, T.-L., Chemistry and pharmacology of Siraitia grosvenorii: A review. Chin. J. Nat. Med. 2014, 12 (2), 89-102. Concordet, J. P.; Haeussler, M., CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018, 46 (W1), W242-W245. D’Andrea, A. D., DNA repair pathways and human cancer. In The molecular basis of cancer, Elsevier: 2015; pp 47-66. e2. da Silva, G. P.; Mack, M.; Contiero, J., Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27 (1), 30-9. da Silveira, F. A.; Diniz, R. H. S.; Sampaio, G. M.; Brandão, R. L.; da Silveira, W. B.; Castro, I. M., Sugar transport systems in Kluyveromyces marxianus CCT 7735. ALJMAO 2019, 112 (2), 211-223. Dai, Z.; Huang, M.; Chen, Y.; Siewers, V.; Nielsen, J., Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nat. Commun. 2018, 9 (1), 3059. Dong, Y.; Li, H.; Zhao, L.; Koopman, P.; Zhang, F.; Huang, J. X., Genome-wide off-target analysis in crispr-cas9 modified mice and their offspring. G3: Genes, Genomes, Genetics 2019, 9 (11), 3645-3651. Dueva, R.; Iliakis, G., Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Transl. Lung Cancer Res. 2013, 2 (3), 163-177. Duina, A. A.; Miller, M. E.; Keeney, J. B., Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 2014, 197 (1), 33-48. Engler, C.; Kandzia, R.; Marillonnet, S., A one pot, one step, precision cloning method with high throughput capability. PloS one 2008, 3 (11), e3647. Everett, R., Promoter sequence and cell type can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type 1 and its immediate-early gene products Vmw175 and Vmw110. J. Mol. Biol. 1988, 203 (3), 739-751. Ferré-D'Amaré, A. R.; Scott, W. G., Small self-cleaving ribozymes. Cold Spring Harb. Perspect. Biol. CSH PERSPECT BIOL 2010, 2 (10), a003574. Fonseca, G. G.; Gombert, A. K.; Heinzle, E.; Wittmann, C., Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 2007, 7 (3), 422-435. Fonseca, G. G.; Heinzle, E.; Wittmann, C.; Gombert, A. K., The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 2008, 79 (3), 339-354. Goffeau, A.; Barrell, B. G.; Bussey, H.; Davis, R. W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J. D.; Jacq, C.; Johnston, M., Life with 6000 genes. Science 1996, 274 (5287), 546-567. Gomez, V.; Hergovich, A., Cell-Cycle Control and DNA-Damage Signaling in Mammals. In Genome Stability, Elsevier: 2016; pp 227-242. Hanscho, M.; Ruckerbauer, D. E.; Chauhan, N.; Hofbauer, H. F.; Krahulec, S.; Nidetzky, B.; Kohlwein, S. D.; Zanghellini, J.; Natter, K., Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012, 12 (7), 796-808. Huang, M.; Wang, G.; Qin, J.; Petranovic, D.; Nielsen, J., Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. PNAS 2018, 115 (47), E11025-E11032. Iiizumi, S.; Kurosawa, A.; So, S.; Ishii, Y.; Chikaraishi, Y.; Ishii, A.; Koyama, H.; Adachi, N., Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Nucleic Acids Res. 2008, 36 (19), 6333-6342. Ishmayana, S.; Learmonth, R. P.; Kennedy, U. J. In Fermentation performance of the yeast Saccharomyces cerevisiae in media with high sugar concentration, Proceedings of the 2nd International Seminar on Chemistry: Chemestry for a Better Future (ISC 2011), Padjadjaran University: 2011; pp 379-385. Ji, Q.; Mai, J.; Ding, Y.; Wei, Y.; Ledesma-Amaro, R.; Ji, X. J., Improving the homologous recombination efficiency of Yarrowia lipolytica by grafting heterologous component from Saccharomyces cerevisiae. Metab. Eng. Commun. 2020, 11, e00152. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E., A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337 (6096), 816–821. Juergens, H.; Varela, J. A.; Gorter de Vries, A. R.; Perli, T.; Gast, V. J. M.; Gyurchev, N. Y.; Rajkumar, A. S.; Mans, R.; Pronk, J. T.; Morrissey, J. P.; Daran, J. G., Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Res. 2018, 18 (3). Kang, S. H.; Lee, W. J.; An, J. H.; Lee, J. H.; Kim, Y. H.; Kim, H.; Oh, Y.; Park, Y. H.; Jin, Y. B.; Jun, B. H.; Hur, J. K.; Kim, S. U.; Lee, S. H., Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nat. Commun. 2020, 11 (1), 3596. Karim, A.; Gerliani, N.; Aïder, M., Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 108818. Karvelis, T.; Gasiunas, G.; Miksys, A.; Barrangou, R.; Horvath, P.; Siksnys, V., crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 2013, 10 (5), 841-851. Kelly, D. E.; Lamb, D. C.; Kelly, S. L., Genome‐wide generation of yeast gene deletion strains. Comp. Funct. Genom. 2001, 2 (4), 236-242. Kruger, N. J., The Bradford Method For Protein Quantitation. In The Protein Protocols Handbook, Walker, J. M., Ed. Humana Press: Totowa, NJ, 2009; pp 17-24. Kuo, H. P.; Wang, R.; Huang, C. Y.; Lai, J. T.; Lo, Y. C.; Huang, S. T., Characterization of an extracellular beta-glucosidase from Dekkera bruxellensis for resveratrol production. J. Food Drug Anal. 2018, 26 (1), 163-171. Kuroda, S. i.; Otaka, S.; Fujisawa, Y., Fermentable and nonfermentable carbon sources sustain constitutive levels of expression of yeast triosephosphate dehydrogenase 3 gene from distinct promoter elements. J. Biol. Chem. 1994, 269 (8), 6153-6162. Levi, O.; Arava, Y., Expanding the CRISPR/Cas9 toolbox for gene engineering in S. cerevisiae. Curr. Microbiol. 2020, 77 (3), 468-478. Li, D.; Zhang, H., Studies and uses of Chinese medicine Luohanguo--a special local product of Guangxi. Guangxi Zhiwu 2000, 20 (3), 270-276. Liu, C.; Dai, L.; Liu, Y.; Dou, D.; Sun, Y.; Ma, L., Pharmacological activities of mogrosides. Future Science: 2018. Liu, Z.; Tyo, K. E.; Martínez, J. L.; Petranovic, D.; Nielsen, J., Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109 (5), 1259-1268. Lobs, A. K.; Schwartz, C.; Wheeldon, I., Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth. Syst. Biotechnol. 2017, 2 (3), 198-207. Marcisauskas, S.; Ji, B.; Nielsen, J., Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics 2019, 20 (1), 551. Mathiasen, D. P.; Lisby, M., Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2014, 38 (2), 172-184. Merico, A.; Ragni, E.; Galafassi, S.; Popolo, L.; Compagno, C., Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol. J. Ind. Microbiol. Biotechnol. 2011, 38 (8), 1037-1044. Mitsui, R.; Yamada, R.; Ogino, H., CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World J. Microbiol. Biotechnol. 2019, 35 (7), 1-9. Nambiar, T. S.; Billon, P.; Diedenhofen, G.; Hayward, S. B.; Taglialatela, A.; Cai, K.; Huang, J.-W.; Leuzzi, G.; Cuella-Martin, R.; Palacios, A., Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 2019, 10 (1), 1-13. Nambu-Nishida, Y.; Nishida, K.; Hasunuma, T.; Kondo, A., Development of a comprehensive set of tools for genome engineering in a cold-and thermo-tolerant Kluyveromyces marxianus yeast strain. Sci. Rep. 2017, 7 (1), 1-8. Papini, M.; Nookaew, I.; Uhlén, M.; Nielsen, J., Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb. Cell Fact. 2012, 11 (1), 1-16. Passador-Gurgel, G.; Furlan, S.; Melier, J.; Jonas, R., Application of a microtitre reader system to the screening of inulinase nulinase-producing yeasts. Appl. Microbiol. Biotechnol. 1996, 45 (1), 158-161. Peleg, M.; Normand, M. D.; Corradini, M. G.; nutrition, The Arrhenius equation revisited. Critical reviews in food science 2012, 52 (9), 830-851. Pfeiffer, T.; Morley, A., An evolutionary perspective on the Crabtree effect. Front. Mol. Biosci. 2014, 1, 17. Rainha, J.; Rodrigues, J. L.; Rodrigues, L. R., CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life 2021, 11 (1), 13. Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M., The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 2015, 117, 119-128. Salari, R.; Salari, R., Investigation of the best Saccharomyces cerevisiae growth condition. Electron. Physician 2017, 9 (1), 3592. Seki, H.; Tamura, K.; Muranaka, T., Plant-derived isoprenoid sweeteners: recent progress in biosynthetic gene discovery and perspectives on microbial production. Biosci. Biotechnol. Biochem. 2018, 82 (6), 927-934. Soyars, C. L.; Peterson, B. A.; Burr, C. A.; Nimchuk, Z. L., Cutting edge genetics: CRISPR/Cas9 editing of plant genomes. Plant Cell Physiol. 2018, 59 (8), 1608-1620. Sung, P.; Klein, H., Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 2006, 7 (10), 739-750. Tripodi, F.; Nicastro, R.; Reghellin, V.; Coccetti, P., Post-translational modifications on yeast carbon metabolism: regulatory mechanisms beyond transcriptional control. Biochimica et Biophysica Acta -General Subjects 2015, 1850 (4), 620-627. Turcotte, B.; Liang, X. B.; Robert, F.; Soontorngun, N., Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 2009, 10 (1), 2-13. Turcotte, B.; Liang, X. B.; Robert, F.; Soontorngun, N., Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 2010, 10 (1), 2-13. Vieira Gomes, A. M.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N. S., Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018, 6 (2), 38. Wang, R.; Chen, Y.-C.; Lai, Y.-J.; Lu, T.-J.; Huang, S.-T.; Lo, Y.-C., Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I. Food Chem. 2019a, 276, 43-49. Wang, R.; Chiu, C.-H.; Lu, T.-J.; Lo, Y.-C., Biotransformation of Mogrosides 7. Sweeteners 2018, 153. Wang, T.; Zhang, H.; Zhu, H., CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 2019b, 6 (1), 1-13. Wardrop, F.; Liti, G.; Cardinali, G.; Walker, G., Physiological responses of Crabtree positive and Crabtree negative yeasts to glucose upshifts in a chemostat. Ann. Microbiol. 2004, 54 (1), 103-114. Waterham, H. R.; Digan, M. E.; Koutz, P. J.; Lair, S. V.; Cregg, J. M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 1997, 186 (1), 37-44. Wu, X.; Kriz, A. J.; Sharp, P. A., Target specificity of the CRISPR-Cas9 system. Quant. Biol. 2014, 2 (2), 59-70. Xia, Y.; Rivero-Huguet, M. E.; Hughes, B. H.; Marshall, W. D., Isolation of the sweet components from Siraitia grosvenorii. Food Chem. 2008, 107 (3), 1022-1028. Xiberras, J.; Klein, M.; Nevoigt, E., Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses–Knowledge gaps regarding the central carbon catabolism of this ‘non-fermentable’carbon source. Biotechnol. Adv. 2019, 37 (6), 107378. Yamamoto, H.; Shima, T.; Yamaguchi, M.; Mochizuki, Y.; Hoshida, H.; Kakuta, S.; Kondo-Kakuta, C.; Noda, N. N.; Inagaki, F.; Itoh, T., The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J. Biol. Chem. 2015, 290 (49), 29506-29518. Yang, C.; Hu, S.; Zhu, S.; Wang, D.; Gao, X.; Hong, J., Characterizing yeast promoters used in Kluyveromyces marxianus. World J. Microbiol. Biotechnol. 2015, 31 (10), 1641-6. Yu, Y.; Mo, W.; Ren, H.; Yang, X.; Lu, W.; Luo, T.; Zeng, J.; Zhou, J.; Qi, J.; Lu, H., Comparative Genomic and Transcriptomic Analysis Reveals Specific Features of Gene Regulation in Kluyveromyces marxianus. Front. Microbiol. 2021, 12, 404. Zhang, J.-P.; Li, X.-L.; Li, G.-H.; Chen, W.; Arakaki, C.; Botimer, G. D.; Baylink, D.; Zhang, L.; Wen, W.; Fu, Y.-W., Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017, 18 (1), 1-18. Zhang, S. J.; Guo, F.; Yan, W.; Dai, Z.; Dong, W.; Zhou, J.; Zhang, W.; Xin, F.; Jiang, M., Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology. Front. Bioeng. Biotechnol. 2020, 7, 459. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81070 | - |
| dc.description.abstract | 近年來非模式生物酵母菌如 Kluyveromyces marxianus,因具有高分泌蛋白的特性(high secretory capacity)、耐高溫及利用各種不同碳源的能力而被廣泛用於發酵工業上。然而,K. marxianus 之同源重組效率低,所以在利用傳統基因工程技術上有一定的困難。因此本實驗以 CRISPR/Cas9 基因編輯技術進行 K. marxianus 菌株之蛋白質表現系統的建立,應用於羅漢果皂苷的轉換。首先,將 K. marxianus 菌株中指定的 β-glucosidase基因(EXG1)剔除並嵌入目標基因(DbEXG1),使其菌株在發酵時具有能力將羅漢果皂苷 mogroside V水解成具有高甜度的 siamenoside I 。結果顯示,菌株在 KmEXG1基因剔除後喪失了水解羅漢果皂苷的能力而嵌入目標基因的菌株則能夠穩定表現 DbExg1 蛋白。為增加 DbExg1蛋白的產量,分別利用不同啟動子序列評估 K. marxianus 及 S. cerevisiae 菌株在大量表現 DbExg1蛋白的能力。出乎預料的是,當菌株利用 S. cerevisiae 的GAP 啟動子序列時(ScGAP),只需要發酵 24小時就能夠將 mogroside V 完全轉換成 siamenoside I。然而,當利用 K. marxianus 的 GAP 啟動子序列(KmGAP)則需要發酵超過72小時。這顯示 S. cerevisiae 菌株在 siamenoside I 皂苷轉換的效率相較基因改造後的 K. marxianus 較好。雖然 K. marxianus 較 S. cerevisiae 具有外泌大量總蛋白的能力,分別在使用 ScGAP 啟動子序列為 (0.68 ± 0.02 mg/mL 及 0.51 ± 0.01 mg/mL,p ˂ 0.05)而在使用 KmGAP 啟動子序列分別為(0.55 ± 0.02 mg/mL 及 0.27 ± 0.02 mg/mL,p ˂ 0.05)。但以 Western Blotting 分析發現 K. marxianus 對 DbExg1的外泌量卻較 S. cerevisiae 少,而 S. cerevisiae 在使用任一種類的 GAP 啟動子相較 K. marxianus 都具有能力外泌較多的 DbExg1 蛋白。因此,S. cerevisiae BY4741 系列在 siamenoside I 皂苷轉換有較好的能力。 未來可利用不同種類的 K. marxianus 進一步測試並評估其菌株在建立大量表現外源性蛋白之系統的可行性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:29:03Z (GMT). No. of bitstreams: 1 U0001-1908202117372500.pdf: 5976258 bytes, checksum: f2ff59d9776148d2e3037a0b4118aaf3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgements i 摘要 ii Abstract iii Table of Contents v List of Figures vii List of Tables ix Supplementary x Appendix x CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 2 2.1 Introduction to yeast 2 2.1.1 Saccharomyces cerevisiae 2 2.1.2 Kluyveromyces marxianus 3 2.2 Mogrosides 4 2.2.1 Biotransformation of mogrosides 6 2.3 Genetic engineering 7 2.3.1 Homologous recombination 7 2.3.2 Non-homologous end joining 9 2.3.3 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) 11 CHAPTER 3 RESEARCH OBJECTIVES AND EXPERIMENTAL DESIGN 16 CHAPTER 4 MATERIALS AND METHODS 18 4.1 Materials 18 4.1.1 Yeast strains 18 4.1.2 Plasmids 18 4.1.3 Primers 18 4.1.4 Medium 25 4.1.5 Reagents 27 4.1.6 Device and instrument 30 4.1.7 Software 32 4.2 Methods 33 4.2.1 Characteristics of yeast strains 33 4.2.2 Genetic engineering 34 4.2.3 Biotransformation 42 4.2.4 Protein analysis 45 4.2.5 Determination of protein concentration and enzyme activity 48 CHAPTER 5 RESULTS AND DISCUSSION 49 5.1 Growth comparison of K. marxianus and S. cerevisiae 49 5.1.1 Growth curve 49 5.1.2 Cell viability 53 5.2 Genetic engineering in Kluyveromyces marxianus 56 5.2.1 Construction of auxotrophic mutants of K. marxianus 56 5.2.2 β-glucosidase gene disruption 65 5.2.3 Cell viability of mutant strains 67 5.3 Mogrosides bioconversion using genetic modified K. marxianus 71 5.4 DbExg1 protein expression in S. cerevisiae and K. marxianus 73 5.4.1 Plasmid construction 73 5.4.2 Yeast integration for the expression of DbExg1 84 5.4.3 Determination of DbExg1 expression 93 5.5 Evaluation of mogroside bioconversion in different yeast 97 5.5.1 Cell survival of yeast strains in medium containing mogroside extract 97 5.5.2 Mogroside bioconversion at different time points 100 5.5.3 Relative quantification in mogroside levels 111 5.6 Medium effect on protein production and enzyme activity 116 5.6.1 Glucose effect on protein production and enzyme activity 116 5.6.2 High fructose corn syrup and glycerol effect on protein production and enzyme activity 119 5.7 GAP promoter effect on DbExg1 protein expression 131 CHAPTER 6 CONCLUSION AND FUTURE PERSPECTIVE 135 CHAPTER 7 REFERENCES 137 CHAPTER 8 SUPPLEMENTARY 142 CHAPTER 9 APPENDIX 149 | |
| dc.language.iso | en | |
| dc.subject | Kluyveromyces marxianus | zh_TW |
| dc.subject | CRISPR/Cas9 | zh_TW |
| dc.subject | 生物轉換 | zh_TW |
| dc.subject | β-glucosidase基因 | zh_TW |
| dc.subject | GAP 啟動子 | zh_TW |
| dc.subject | β-glucosidase gene | en |
| dc.subject | GAP promoter | en |
| dc.subject | bioconversion | en |
| dc.subject | CRISPR/Cas9 | en |
| dc.subject | Kluyveromyces marxianus | en |
| dc.title | 利用Kluyveromyces marxianus建立蛋白質表現系統應用於siamenoside I 之轉換 | zh_TW |
| dc.title | Establishing Kluyveromyces marxianus as a robust platform for siamenoside I bioconversion | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高承福(Hsin-Tsai Liu),呂廷璋(Chih-Yang Tseng),陳宏彰,王如邦 | |
| dc.subject.keyword | Kluyveromyces marxianus,CRISPR/Cas9,生物轉換,β-glucosidase基因,GAP 啟動子, | zh_TW |
| dc.subject.keyword | Kluyveromyces marxianus,CRISPR/Cas9,bioconversion,β-glucosidase gene,GAP promoter, | en |
| dc.relation.page | 157 | |
| dc.identifier.doi | 10.6342/NTU202102521 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202117372500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
