Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80940
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄(Min-Hsiung Pan)
dc.contributor.authorRu-Yu Lien
dc.contributor.author李儒育zh_TW
dc.date.accessioned2022-11-24T03:22:51Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:22:51Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-13
dc.identifier.citation參考文獻 [1] 衛生福利部(2020,6月16日).108年死因統計結果分析。https://www.mohw.gov.tw/cp-16-54482-1.html [Ministry of Health and Welfare, Taiwan, ROC. (2020, June 16). Cause of death statistics in Taiwan, 2019. https://www.mohw.gov.tw/cp-16-54482-1.html] [2] Häuselmann, I. and Borsig, L. Altered tumor-cell glycosylation promotes metastasis. Frontiers in oncology (2014) 4: 28. [3] Basu, Ashis K. 'DNA damage, mutagenesis and cancer.' International journal of molecular sciences 19.4 (2018): 970. [4] Sporn, M. B.; Dunlop, N.; Newton, D. and Smith, J. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Federation proceedings (1976). [5] De Flora, S. and Ferguson, L. R. Overview of mechanisms of cancer chemopreventive agents. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (2005) 591(1-2): 8-15. [6] Deelman, H. Die Entstehung des experimentellen Teerkrebses und die Bedeutung der Zellenregeneration. Zeitschrift für Krebsforschung (1924) 21(3): 220-226. [7] Berenblum, I. and Shubik, P. The persistence of latent tumour cells induced in the mouse's skin by a single application of 9: 10-dimethyl-1: 2-benzanthracene. British journal of cancer (1949) 3(3): 384. [8] Digiovanni, J. and Juchau, M. R. Biotransformation and bioactivation of 7, 12-dimethylbenz [a] anthracene (7, 12-DMBA). Drug metabolism reviews (1980) 11(1): 61-101. [9] DiGiovanni, J. Multistage carcinogenesis in mouse skin. Pharmacology therapeutics (1992) 54(1): 63-128. [10] Seo, Y. R.; Sweeney, C. and Smith, M. L. Selenomethionine induction of DNA repair response in human fibroblasts. Oncogene (2002) 21(23): 3663-3669. [11] Mueller, M. M. Inflammation in epithelial skin tumours: old stories and new ideas. European journal of cancer (2006) 42(6): 735-744. [12] Whitehead, Tracy L., et al. '1H nuclear magnetic resonance metabolomic analysis of mammary tumors from lean and obese Zucker rats exposed to 7, 12-dimethylbenz [a] anthracene.' International journal of molecular medicine 20.4 (2007): 573-580. [13] Turner, M. D.; Nedjai, B.; Hurst, T. and Pennington, D. J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research (2014) 1843(11): 2563-2582. [14] Murakami, M. and Hirano, T. The molecular mechanisms of chronic inflammation development. Frontiers in immunology (2012) 3: 323. [15] Laroux, F. S. Mechanisms of inflammation: the good, the bad and the ugly. Frontiers in bioscience: a journal and virtual library (2004) 9: 3156. [16] Germano, G.; Allavena, P. and Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine (2008) 43(3): 374-379. [17] Albini, A. and Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nature Reviews Cancer (2007) 7(2): 139-147. [18] Shan, Y.; Wei, Z.; Tao, L.; Wang, S.; Zhang, F.; Shen, C.; Wu, H.; Liu, Z.; Zhu, P. and Wang, A. Prophylaxis of diallyl disulfide on skin carcinogenic model via p21-dependent Nrf2 stabilization. Scientific reports (2016) 6: 35676. [19] Singh, Madhulika, Shankar Suman, and Yogeshwer Shukla. 'New enlightenment of skin cancer chemoprevention through phytochemicals: in vitro and in vivo studies and the underlying mechanisms.' BioMed research international (2014). [20] Garbisa, S.; Araldi, E.; Dell'Aica, I.; Sogno, I.; Lorusso, G. and Albini, A. Natural and synthetic agents targeting inflammation and angiogenesis for chemoprevention of prostate cancer. Current Cancer Drug Targets (2008) 8(2): 146-155. [21] Pan, M. H. Ho, C. T. Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society Reviews (2008) 37(11): 2558-2574. [22] Katiyar, S. K. and Mukhtar, H. Tea antioxidants in cancer chemoprevention. Journal of Cellular Biochemistry (1997) 67(S27): 59-67. [23] Greenhough, A.; Smartt, H. J.; Moore, A. E.; Roberts, H. R.; Williams, A. C.; Paraskeva, C. and Kaidi, A. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis (2009) 30(3): 377-386. [24] Simmons, D. L.; Botting, R. M. and Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological reviews (2004) 56(3): 387-437. [25] Rodrigues, S.; Bruyneel, E.; Rodrigue, C. M.; Shahin, E. and Gespach, C. [Cyclooxygenase 2 and carcinogenesis]. Bull Cancer (2004) 91 Suppl 2: S61-76. [26] Cha, Y. I. and DuBois, R. N. NSAIDs and cancer prevention: targets downstream of COX-2. Annu. Rev. Med. (2007) 58: 239-252. [27] Linsalata, M.; Caruso, M. G.; Leo, S.; Guerra, V.; D'Attoma, B. and Di Leo, A. Prognostic value of tissue polyamine levels in human colorectal carcinoma. Anticancer research (2002) 22(4): 2465-2469. [28] Pegg, A. E. Regulation of ornithine decarboxylase. Journal of Biological Chemistry (2006) 281(21): 14529-14532. [29] Lee, C.-Y.; Su, G.-C.; Huang, W.-Y.; Ko, M.-Y.; Yeh, H.-Y.; Chang, G.-D.; Lin, S.-J. Chi, P. Promotion of homology-directed DNA repair by polyamines. Nature communications (2019) 10(1): 1-11. [30] Einspahr, J. G.; Bowden, G. T. and Alberts, D. S. Skin cancer chemoprevention: strategies to save our skin. Tumor Prevention and Genetics, (2003) Springer: 151-164. [31] Auvinen, M.; Laine, A.; Paasinen-Sohns, A.; Kangas, A.; Kangas, L.; Saksela, O.; Andersson, L. C. and Hölttä, E. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer research (1997) 57(14): 3016-3025. [32] Verma, A. K.; Shapas, B. G.; Rice, H. M. and Boutwell, R. Correlation of the inhibition by retinoids of tumor promoter-induced mouse epidermal ornithine decarboxylase activity and of skin tumor promotion. Cancer Research (1979) 39(2 Part 1): 419-425. [33] NAKADATE, T.; AIZU, E.; YAMAMOTO, S.; FUJIKI, H.; SUGIMURA, T. and KATO, R. Inhibition of teleocidin-caused epidermal ornithine decarboxylase induction by phospholipase A2-, cyclooxygenase-and lipoxygenase-inhibitors. The Japanese Journal of Pharmacology (1985) 37(3): 253-258. [34] Manicone, A. M. and McGuire, J. K. Matrix metalloproteinases as modulators of inflammation. Seminars in cell developmental biology, Elsevier (2008). [35] Klein, G.; Vellenga, E.; Fraaije, M.; Kamps, W. and De Bont, E. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, eg acute leukemia. Critical reviews in oncology/hematology (2004) 50(2): 87-100. [36] Akira, S.; Nishio, Y.; Inoue, M.; Wang, X.-J.; We, S.; Matsusaka, T.; Yoshida, K.; Sudo, T.; Naruto, M. and Kishimoto, T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell (1994) 77(1): 63-71. [37] Schindler, C.; Levy, D. E. and Decker, T. JAK-STAT signaling: from interferons to cytokines. Journal of Biological Chemistry (2007) 282(28): 20059-20063. [38] Jing, N. and Tweardy, D. J. Targeting Stat3 in cancer therapy. Anti-cancer drugs (2005) 16(6): 601-607. [39] Bar-Natan, M.; Nelson, E. A.; Xiang, M. and Frank, D. A. STAT signaling in the pathogenesis and treatment of myeloid malignancies. Jak-Stat (2012) 1(2): 55-64. [40] Frank, D. A. STAT3 as a central mediator of neoplastic cellular transformation. Cancer letters (2007) 251(2): 199-210. [41] Kanda, N.; Seno, H.; Konda, Y.; Marusawa, H.; Kanai, M.; Nakajima, T.; Kawashima, T.; Nanakin, A.; Sawabu, T. and Uenoyama, Y. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene (2004) 23(28): 4921-4929. [42] Aggarwal, B. B.; Shishodia, S.; Sandur, S. K.; Pandey, M. K. and Sethi, G. Inflammation and cancer: how hot is the link? Biochemical pharmacology (2006) 72(11): 1605-1621. [43] Yu, H.; Kortylewski, M. and Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology (2007) 7(1): 41-51. [44] Chan, K.; Sano, S.; Kataoka, K.; Abel, E.; Carbajal, S.; Beltran, L.; Clifford, J.; Peavey, M.; Shen, J. and Digiovanni, J. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene (2008) 27(8): 1087-1094. [45] Carpenter, C. L. and Cantley, L. C. Phosphoinositide kinases. Current opinion in cell biology (1996) 8(2): 153-158. [46] Luo, J.; Manning, B. D. and Cantley, L. C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer cell (2003) 4(4): 257-262. [47] Mills, G. B.; Kohn, E.; Lu, Y.; Eder, A.; Fang, X.; Wang, H.; Bast, R. C.; Gray, J.; Jaffe, R. and Hortobagyi, G. Linking molecular diagnostics to molecular therapeutics: targeting the PI3K pathway in breast cancer. Seminars in oncology, Elsevier (2003). [48] Osaki, M.; Kase, S.; Adachi, K.; Takeda, A.; Hashimoto, K. and Ito, H. Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. Journal of cancer research and clinical oncology (2004) 130(1): 8-14. [49] Hwang, D.-M.; Kundu, J. K.; Shin, J. W.; Lee, J. C.; Lee, H. J. and Surh, Y.-J. cis-9, trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-κB activation and subsequent COX-2 expression in hairless mouse skin by targeting IκB kinase and PI3K-Akt. Carcinogenesis (2007) 28(2): 363-371. [50] Norbury, C. and Nurse, P. Animal cell cycles and their control. Annual review of biochemistry (1992) 61(1): 441-468. [51] Malumbres, M. Cyclin-dependent kinases. Genome biology (2014) 15(6): 1-10. [52] Nabel, E. G. CDKs and CKIs: molecular targets for tissue remodelling. Nature Reviews Drug Discovery (2002) 1(8): 587-598. [53] Hunt, T. Cyclins and their partners: from a simple idea to complicated reality. Seminars in cell biology (1991) [54] Girard, F.; Strausfeld, U.; Fernandez, A. and Lamb, N. J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell (1991) 67(6): 1169-1179. [55] Gautier, J.; Minshull, J.; Lohka, M.; Glotzer, M.; Hunt, T. and Maller, J. L. Cyclin is a component of maturation-promoting factor from Xenopus. Cell (1990) 60(3): 487-494. [56] Ekholm, S. V. and Reed, S. I. Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Current opinion in cell biology (2000) 12(6): 676-684. [57] Newman, R. M.; Mobascher, A.; Mangold, U.; Koike, C.; Diah, S.; Schmidt, M.; Finley, D. and Zetter, B. R. Antizyme targets cyclin D1 for degradation A novel mechanism for cell growth repression. Journal of Biological Chemistry (2004) 279(40): 41504-41511. [58] Honda, R.; Lowe, E. D.; Dubinina, E.; Skamnaki, V.; Cook, A.; Brown, N. R. and Johnson, L. N. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2‐independent roles. The EMBO journal (2005) 24(3): 452-463. [59] White, J.; Stead, E.; Faast, R.; Conn, S.; Cartwright, P. and Dalton, S. Developmental activation of the Rb–E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Molecular biology of the cell (2005) 16(4): 2018-2027. [60] J Johnson, D. G. and Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Front Biosci (1998) 3: d447-d448. [61] Hartwell, L. H. and Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science (1989) 246(4930): 629-634. [62] Kastan, M. B. and Bartek, J. Cell-cycle checkpoints and cancer. Nature (2004) 432(7015): 316-323. [63] Paulovich, A. G.; Toczyski, D. P. and Hartwell, L. H. When checkpoints fail. Cell (1997) 88(3): 315-321. [64] Almodaifer, S.; Alsibaie, N.; Alhoumendan, G.; Alammari, G. and Kavita, M. Role of phytochemicals in health and nutrition. BAO J Nutr (2017) 3: 28-34. [65] Bartwal, A.; Mall, R.; Lohani, P.; Guru, S. and Arora, S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of plant growth regulation (2013) 32(1): 216-232. [66] Bathaie, S. Z.; Faridi, N.; Nasimian, A.; Heidarzadeh, H. and Tamanoi, F. How Phytochemicals Prevent Chemical Carcinogens and/or Suppress Tumor Growth? The Enzymes, Elsevier. (2015) 37: 1-42. [67] Li, S.; Pan, M.-H.; Lo, C.-Y.; Tan, D.; Wang, Y.; Shahidi, F. and Ho, C.-T. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods (2009) 1(1): 2-12. [68] Khan, N.; Al Daghri, N. M.; Al Ajlan, A. S. and Alokail, M. S. The use of natural and derived sources of flavonoids and antioxidants in Saudi Arabia. Integrative Food Nutrition Metabolism (2014) 1(2): 100-106. [69] Choi, M. Y.; Chai, C.; Park, J. H.; Lim, J.; Lee, J. and Kwon, S. W. Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. Journal of Pharmaceutical and Biomedical Analysis (2011) 54(4): 638-645. [70] Li, S.; Pan, M.H.; Lai, C.S.; Lo, C.Y.; Dushenkov, S. and Ho, C.T. Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines. Bioorganic medicinal chemistry (2007) 15(10): 3381-3389. [71] Guo, J.; Cao, Y.; Ho, C. T.; Jin, S. and Huang, Q. Aged citrus peel (chenpi) extract reduces lipogenesis in differentiating 3T3-L1 adipocytes. Journal of Functional Foods (2017) 34: 297-303. [72] Goh, J. X. H.; Tan, L. T.-H.; Goh, J. K.; Chan, K. G.; Pusparajah, P.; Lee, L.-H. And Goh, B.-H. Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers (2019) 11(6): 867. [73] Gao, Z.; Gao, W.; Zeng, S. L.; Li, P. and Liu, E.-H. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. Journal of functional foods (2018) 40: 498-509. [74] Morley, K. L.; Ferguson, P. J. and Koropatnick, J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer letters (2007) 251(1): 168-178. [75] Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K. and Yano, M. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer research (2000) 60(18): 5059-5066. [76] Akao, Y.; Ohguchi, K.; Iinuma, M. and Nozawa, Y. Interactive effects of polymethoxy flavones from Citrus on cell growth inhibition in human neuroblastoma SH-SY5Y cells. Bioorganic medicinal chemistry (2008) 16(6): 2803-2810. [77] Pan, M.-H.; Lai, Y.-S.; Lai, C.-S.; Wang, Y.-J.; Li, S.; Lo, C.-Y.; Dushenkov, S. and Ho, C.-T. 5-hydroxy-3, 6, 7, 8, 3 ‘, 4 ‘-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells. Journal of agricultural and food chemistry (2007) 55(13): 5081-5091. [78] Song, M.; Charoensinphon, N.; Wu, X.; Zheng, J.; Gao, Z.; Xu, F.; Wang, M. and Xiao, H. Inhibitory effects of metabolites of 5-demethylnobiletin on human nonsmall cell lung cancer cells. Journal of agricultural and food chemistry (2016) 64(24): 4943-4949. [79] Chiu, S. P.; Wu, M. J.; Chen, P. Y.; Ho, Y. R.; Tai, M. H.; Ho, C. T. Yen, J.-H. Neurotrophic action of 5-hydroxylated polymethoxyflavones: 5-demethylnobiletin and gardenin A stimulate neuritogenesis in PC12 cells. Journal of agricultural and food chemistry (2013) 61(39): 9453-9463. [80] Chen, Y. K.; Wang, H. C.; Ho, C. T.; Chen, H. Y.; Li, S.; Chan, H. L.; Chung, T.-W.; Tan, K. T.; Li, Y.-R. Lin, C. C. 5-Demethylnobiletin promotes the formation of polymerized tubulin, leads to G2/M phase arrest and induces autophagy via JNK activation in human lung cancer cells. The Journal of Nutritional Biochemistry (2015) 26(5): 484-504. [81] Wu, J. C.; Tung, Y. C.; Zheng, Y. N.; Tsai, M. L.; Lai, C. S.; Ho, C. T. and Pan, M.-H. 5-Demethylnobiletin is more effective than nobiletin in preventing AOM/DSS-induced colorectal carcinogenesis in ICR mice. Journal of Food Bioactives (2018) 2: 98–103-198–103. [82] Wang, M.; Meng, D.; Zhang, P.; Wang, X.; Du, G.; Brennan, C.; Li, S.; Ho, C.-T. and Zhao, H. Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. Journal of agricultural and food chemistry (2018) 66(12): 3155-3160. [83] Zheng, J.; Song, M.; Dong, P.; Qiu, P.; Guo, S.; Zhong, Z.; Li, S.; Ho, C. T. and Xiao, H. Identification of novel bioactive metabolites of 5‐demethylnobiletin in mice. Molecular nutrition food research (2013) 57(11): 1999-2007. [84] Argyris, T. S. Nature of the epidermal hyperplasia produced by mezerein, a weak tumor promoter, in initiated skin of mice. Cancer research (1983) 43(4): 1768-1773. [85] 高雪芹;韓金祥, 環氧合酶-2與腫瘤侵襲和轉移. 世界腫瘤雜誌 (2004) 3, 5-10 [86] Higashi, Y.; Kanekura, T. and Kanzaki, T. Enhanced expression of cyclooxygenase (COX‐2) in human skin epidermal cancer cells: Evidence for growth suppression by inhibiting COX‐2 expression. International Journal of Cancer (2000) 86(5): 667-671. [87] Roelofs, H. M.; Te Morsche, R. H.; van Heumen, B. W.; Nagengast, F. M. and Peters, W. H. Over-expression of COX-2 mRNA in colorectal cancer. BMC gastroenterology (2014) 14(1): 9005. [88] Lai, C.-S.; Li, S.; Chai, C. Y.; Lo, C. Y.; Dushenkov, S.; Ho, C. T.; Pan, M. H. Wang, Y.J. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3′, 4′-didemethylnobiletin, derived from nobiletin. Carcinogenesis (2008) 29(12): 2415-2424. [89] Hendel, J. and Nielsen, O. Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. American Journal of Gastroenterology (Springer Nature) (1997) 92(7). [90] Wu, X.; Song, M.; Rakariyatham, K.; Zheng, J.; Wang, M.; Xu, F.; Gao, Z. and Xiao, H. Inhibitory effects of 4′-demethylnobiletin, a metabolite of nobiletin, on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mouse ears. Journal of agricultural and food chemistry (2015) 63(51): 10921-10927. [91] Jiao, J.; Mikulec, C.; Ishikawa, T.-o.; Magyar, C.; Dumlao, D. S.; Dennis, E. A.; Fischer, S. M. and Herschman, H. Cell-type-specific roles for COX-2 in UVB-induced skin cancer. Carcinogenesis (2014) 35(6): 1310-1319. [92] Murakami, A.; Shigemori, T. and Ohigashi, H. Zingiberaceous and citrus constituents, 1′-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264. 7 murine macrophages through different modes of action. The Journal of nutrition (2005) 135(12): 2987S-2992S. [93] Thomas, T. and Thomas, T. Polyamine metabolism and cancer. Journal of cellular and molecular medicine (2003) 7(2): 113-126. [94] Bergers, G.; Brekken, R.; McMahon, G.; Vu, T. H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S. and Werb, Z. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature cell biology (2000) 2(10): 737-744. [95] Zoumpourlis, V.; Solakidi, S.; Papathoma, A. and Papaevangeliou, D. Alterations in signal transduction pathways implicated in tumour progression during multistage mouse skin carcinogenesis. Carcinogenesis (2003) 24(7): 1159-1165. [96] Santana, C.; Ortega, E. and Garcı́a-Carrancá, A. Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (2002) 508(1-2): 49-58. [97] Cook, J. G.; Park, C.-H.; Burke, T. W.; Leone, G.; DeGregori, J.; Engel, A. and Nevins, J. R. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proceedings of the National Academy of Sciences (2002) 99(3): 1347-1352. [98] Coverley, D.; Laman, H. and Laskey, R. A. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nature Cell Biology (2002) 4(7): 523-528. [99] Bortner, D. M. and Rosenberg, M. P. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Molecular and cellular biology (1997) 17(1): 453-459. [100] Porter, P. L.; Malone, K. E.; Heagerty, P. J.; Alexander, G. M.; Gatti, L. A.; Firpo, E. J.; Daling, J. R. and Roberts, J. M. Expression of cell-cycle regulators p27 Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature medicine (1997) 3(2): 222-225. [101] Donnellan, R. and Chetty, R. Cyclin E in human cancers. The FASEB Journal (1999) 13(8): 773-780. [102] Malumbres, M.; Hunt, S. L.; Sotillo, R.; Martín, J.; Odajima, J.; Martín, A.; Dubus, P.; Ortega, S. and Barbacid, M. Driving the cell cycle to cancer. Springer (2003).: 1-11. [103] Yu, H.; Pardoll, D. and Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature reviews cancer (2009) 9(11): 798-809. [104] Bollrath, J.; Phesse, T. J.; von Burstin, V. A.; Putoczki, T.; Bennecke, M.; Bateman, T.; Nebelsiek, T.; Lundgren-May, T.; Canli, Ö. and Schwitalla, S. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer cell (2009) 15(2): 91-102. [105] Xu, Z.; Wu, D.; Fu, D.; Tang, C.; Ge, J.; Zhang, Z. and Zhou, W. Nobiletin inhibits viability of human renal carcinoma cells via the JAK2/STAT3 and PI3K/Akt pathway. Cellular and Molecular Biology (2020) 66(5): 199-203. [106] Van Dross, R. T.; Hong, X. and Pelling, J. C. Inhibition of TPA‐induced cyclooxygenase‐2 (COX‐2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center (2005) 44(2): 83-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80940-
dc.description.abstract"由於生活型態與環境的變化,全球範圍內的罹癌率逐年攀升,因此癌症的化學預防成為了一個重要的研究主題,腫瘤的生成包含許多步驟,主要區分為三個階段,依序為起始期(Initiation stage)、促進期(Promotion stage)及發展期(Progression stage)。發炎反應在腫瘤促進期間扮演重要角色,因此抗發炎被視為癌症化學預防的關鍵手段。柑橘類果皮中富含的多甲氧基類黃酮(polymethoxyflavones; PMFs)已被眾多研究證實具備抗氧化、抗發炎與抗癌等功效;近年來,川陳皮素(nobiletin; NOB)水解後形成5-去甲基川陳皮素(5-demethylnobiletin; DMNB)具有不同的生物活性而備受關注,然其抗癌活性與相關分子機制尚未被徹底探討。因此在本實驗的第一步將透過12-O-tetradecanoyl-phorbol-13-acetate(TPA)誘導發炎模式,比較NOB與DMNB並探討抑制發炎與抗腫瘤之效果與其相關分子機制。實驗結果顯示,在TPA誘導發炎模式下,DMNB比NOB更能有效降低皮膚促發炎和增生相關蛋白matrix metalloprotein-9 (MMP-9)、cyclooxygenase-2ar (COX-2)及ornithine decarboxylase(ODC)的表現,並減少皮膚增厚的情形。在皮膚二階段致癌模式實驗中,於小鼠背部局部塗抹DMNB可顯著降低7,12-dimethylbenz[a]anthracene (DMBA)/TPA誘導皮膚腫瘤發生率與腫瘤數目,另外分子機制研究方面發現,DMNB皆比NOB顯著抑制由TPA引發的phosphatidylinositol 3-kinase (PI3K)磷酸化、轉錄因子signal transducer and activator of transcription 3 (STAT3)以及細胞促增生蛋白Cyclin B1、Cyclin E1的表現。除此之外,皮膚促發炎蛋白COX-2與TPA誘導發炎模式時比較下,DMNB更能長時間維持抑制COX-2表現量;綜上所述,本研究的實驗結果證明,DMNB比NOB更具備抑制發炎反應及腫瘤的功效,具備作為天然癌症化學預防試劑的潛力。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:22:51Z (GMT). No. of bitstreams: 1
U0001-1309202115535500.pdf: 3389037 bytes, checksum: bdb7f3d99f1a90b2b40a292b0d4358eb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"論文口試委員審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 ix 第壹章、前言 1 第一節 研究動機以及重要性 1 第二節 研究問題與目的 1 第三節 研究專有名詞縮寫與全文 2 第貳章、文獻回顧 3 第一節、正常細胞轉型惡性腫瘤 3 第二節、化學性方法製造皮膚致癌模式的二階段應用 4 第三節、發炎與癌症 (Inflammation and cancer) 7 第四節、調控發炎反應與腫瘤生成的重要因子 10 第五節、細胞週期與調控機制 12 第六節-去甲基川陳皮素(5-Demethylnobiletin;DMNB)生理活性 14 (一) 5-去甲基川陳皮素概述 14 (二) 5-去甲基川陳皮素的生理活性 16 第參章、研究架構 17 第肆章、材料與實驗方法 19 第一節、材料 19 (一) 化學藥品與試劑 19 (二) 耗材 20 (三) 儀器設備 21 第二節、合成5-去甲基川陳皮素 (DMNB) 23 第三節、動物實驗(in vivo) 23 (一) TPA誘發皮膚發炎模式(TPA-induced skin inflammation model) 23 (二) DMBA/TPA誘導皮膚二階段致癌模式 25 (三) 西方墨點法(Western blot) 28 (四) 蘇木精-伊紅染色(Hematoxylin and eosin stain, H E stain) 32 第四節、倫理研究考量 37 第伍章、實驗結果 38 第一節、NOB和DMNB對TPA誘發小鼠皮膚發炎反應 39 (一) NOB和DMNB對TPA誘發小鼠皮膚發炎反應的組織型態 39 (二) NOB和DMNB對TPA誘發小鼠皮膚發炎的相關蛋白 41 第二節、NOB及DMNB於DMBA/TPA誘導小鼠皮膚腫瘤發展的作用 42 (一) NOB及DMNB對體重與臟器重量的影響 42 (二) NOB及DMNB對DMBA/TPA誘導小鼠皮膚腫瘤生長的效果 44 (三) NOB及DMNB對DMNA/TPA誘導腫瘤模式下對於皮膚組織的影響 47 (四) NOB和DMNB對DMBA/TPA誘導小鼠皮膚腫瘤相關蛋白的作用比較 49 (五) NOB和DMNB對DMBA/TPA誘導小鼠皮膚腫瘤有絲分裂的相關蛋白 51 (六) NOB和DMNB對DMBA/TPA誘發小鼠皮膚腫瘤增生上游細胞的調節作用 52 第陸章、討論 54 第一節、NOB與DMNB對小鼠皮膚誘導發炎導致厚度增生的效果 54 第二節、NOB和DMNB對TPA誘發小鼠皮膚發炎相關蛋白的影響 55 第三節、NOB及DMNB於DMBA/TPA誘導小鼠體重與臟器重量與皮膚腫瘤發展 56 第四節、NOB及DMNB抑制DMBA/TPA誘導小鼠皮膚腫瘤生長的效果 56 第五節、NOB及DMNB於DMNA/TPA誘導腫瘤模式下對於皮膚組織的影響 57 第六節、NOB和DMNB於DMBA/TPA誘導小鼠皮膚腫瘤生長相關蛋白的影響 57 第七節、NOB和DMNB於DMBA/TPA誘發小鼠皮膚腫瘤增生上游細胞調節作用 59 第柒章、結論 60 參考文獻 62 附錄 76 "
dc.language.isozh-TW
dc.subject5-去甲基川陳皮素zh_TW
dc.subject12-O-tetradecanoylphorbol-13-acetate (TPA)zh_TW
dc.subject12-dimethylbenz[a]-anthracene (DMBA)zh_TW
dc.subject抗發炎zh_TW
dc.subjectAnti-inflammationen
dc.subject12-dimethylbenz[a]-anthracene (DMBA)en
dc.subject5-demethylnobiletin (DMNB)en
dc.subject12-O-tetradecanoylphorbol-13-acetate (TPA)en
dc.title探討5-Demethylnobiletin抑制TPA誘導小鼠皮膚發炎及DMBA/TPA皮膚致癌之功效zh_TW
dc.titleInhibitory effect of 5-Demethylnobiletin on inhibiting TPA induced skin inflammation and DMBA/TPA induced skin carcinogenesis in miceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭靜娟(Hsin-Tsai Liu),王應然(Chih-Yang Tseng),黃步敏,何元順
dc.subject.keyword5-去甲基川陳皮素,抗發炎,7,12-dimethylbenz[a]-anthracene (DMBA),12-O-tetradecanoylphorbol-13-acetate (TPA),zh_TW
dc.subject.keyword5-demethylnobiletin (DMNB),Anti-inflammation,7,12-dimethylbenz[a]-anthracene (DMBA),12-O-tetradecanoylphorbol-13-acetate (TPA),en
dc.relation.page76
dc.identifier.doi10.6342/NTU202103148
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1309202115535500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved