請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顧家綺(Chia-Chi Ku) | |
| dc.contributor.author | Cheng-Sheng Lai | en |
| dc.contributor.author | 賴證升 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:22:30Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:22:30Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | Akkaya, M., K. Kwak and S. K. Pierce (2020). 'B cell memory: building two walls of protection against pathogens.' Nature Reviews Immunology 20(4): 229-238. 2. Andrews, S. F., Y. Huang, K. Kaur, L. I. Popova, I. Y. Ho, N. T. Pauli, C. J. Henry Dunand, W. M. Taylor, S. Lim, M. Huang, X. Qu, J. H. Lee, M. Salgado-Ferrer, F. Krammer, P. Palese, J. Wrammert, R. Ahmed and P. C. Wilson (2015). 'Immune history profoundly affects broadly protective B cell responses to influenza.' Sci Transl Med 7(316): 316ra192. 3. Antigua, K. J. C., W. S. Choi, Y. H. Baek and M. S. Song (2019). 'The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx.' Microorganisms 7(6). 4. Bachmann, M. F., B. Ecabert and M. Kopf (1999). 'Influenza virus: a novel method to assess viral and neutralizing antibody titers in vitro.' J Immunol Methods 225(1-2): 105-111. 5. Baskin, C. R., H. Bielefeldt-Ohmann, M. G. Katze et al (2009). 'Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus.' Proc Natl Acad Sci U S A 106(9): 3455-3460. 6. Bertran, K., M. F. Criado, D.-H. Lee, L. Killmaster, M. Sá e Silva, E. Lucio, J. Widener, N. Pritchard, E. Atkins, T. Mebatsion and D. E. Swayne (2020). 'Protection of White Leghorn chickens by recombinant fowlpox vector vaccine with an updated H5 insert against Mexican H5N2 avian influenza viruses.' Vaccine 38(6): 1526-1534. 7. Brandenburg, B., W. Koudstaal, J. Goudsmit, V. Klaren, C. Tang, M. V. Bujny, H. J. W. M. Korse, T. Kwaks, J. J. Otterstrom, J. Juraszek, A. M. van Oijen, R. Vogels and R. H. E. Friesen (2013). 'Mechanisms of hemagglutinin targeted influenza virus neutralization.' PloS one 8(12): e80034-e80034. 8. Chen, H. (2009). 'Avian influenza vaccination: the experience in China.' Rev Sci Tech 28(1): 267-274. 9. Chen, L. M., O. Blixt, J. Stevens, A. S. Lipatov, C. T. Davis, B. E. Collins, N. J. Cox, J. C. Paulson and R. O. Donis (2012). 'In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity.' Virology 422(1): 105-113. 10. Chen, X., T. Zhou, S. D. Schmidt, H. Duan, C. Cheng, G. Y. Chuang, Y. Gu, M. K. Louder, B. C. Lin, C. H. Shen, Z. Sheng, M. X. Zheng, N. A. Doria-Rose, M. G. Joyce, L. Shapiro, M. Tian, F. W. Alt, P. D. Kwong and J. R. Mascola (2021). 'Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth.' Immunity 54(2): 324-339.e328. 11. Chen, Y. Q., T. J. Wohlbold, N. Y. Zheng, M. Huang, Y. Huang, K. E. Neu, J. Lee, H. Wan, K. T. Rojas, E. Kirkpatrick, C. Henry, A. E. Palm, C. T. Stamper, L. Y. Lan, D. J. Topham, J. Treanor, J. Wrammert, R. Ahmed, M. C. Eichelberger, G. Georgiou, F. Krammer and P. C. Wilson (2018). 'Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies.' Cell 173(2): 417-429.e410. 12. Claas, E. C., A. D. Osterhaus, R. van Beek, J. C. De Jong, G. F. Rimmelzwaan, D. A. Senne, S. Krauss, K. F. Shortridge and R. G. Webster (1998). 'Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus.' Lancet 351(9101): 472-477. 13. Dong, J., Y. Matsuoka, T. R. Maines, D. E. Swayne, E. O'Neill, C. T. Davis, N. Van-Hoven, A. Balish, H. J. Yu, J. M. Katz, A. Klimov, N. Cox, D. X. Li, Y. Wang, Y. J. Guo, W. Z. Yang, R. O. Donis and Y. L. Shu (2009). 'Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production.' Influenza Other Respir Viruses 3(6): 287-295. 14. Ekiert, D. C., A. K. Kashyap, J. Steel, A. Rubrum, G. Bhabha, R. Khayat, J. H. Lee, M. A. Dillon, R. E. O’Neil, A. M. Faynboym, M. Horowitz, L. Horowitz, A. B. Ward, P. Palese, R. Webby, R. A. Lerner, R. R. Bhatt and I. A. Wilson (2012). 'Cross-neutralization of influenza A viruses mediated by a single antibody loop.' Nature 489(7417): 526-532. 15. El Bakkouri, K., F. Descamps, F. Krammer and R. Ahmed et al. (2020). 'Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans.' Proceedings of the National Academy of Sciences 117(30): 17957. 16. Evseev, D. and K. E. Magor (2019). 'Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens.' Veterinary sciences 6(1): 5. 17. Ge, J., G. Deng, Z. Wen, G. Tian, Y. Wang, J. Shi, X. Wang, Y. Li, S. Hu, Y. Jiang, C. Yang, K. Yu, Z. Bu and H. Chen (2007). 'Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses.' Journal of virology 81(1): 150-158. 18. Gunti, S. and A. L. Notkins (2015). 'Polyreactive Antibodies: Function and Quantification.' The Journal of infectious diseases 212 Suppl 1(Suppl 1): S42-S46. 19. Guthmiller, J. J., L. Y. Lan, M. L. Fernández-Quintero, F. Krammer, A. B. Ward, K. R. Liedl and P. C. Wilson et al. (2020). 'Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses.' Immunity. 20. Hamilton, B. S., G. R. Whittaker and S. Daniel (2012). 'Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion.' Viruses 4(7): 1144-1168. 21. Heine, H. G., L. Trinidad, P. Selleck and S. Lowther (2007). 'Rapid detection of highly pathogenic avian influenza H5N1 virus by TaqMan reverse transcriptase-polymerase chain reaction.' Avian Dis 51(1 Suppl): 370-372. 22. Ho, H.-T., H.-L. Qian, F. He, T. Meng, M. Szyporta, N. Prabhu, M. Prabakaran, K.-P. Chan and J. Kwang (2009). 'Rapid Detection of H5N1 Subtype Influenza Viruses by Antigen Capture Enzyme-Linked Immunosorbent Assay Using H5- and N1-Specific Monoclonal Antibodies.' Clinical and Vaccine Immunology 16(5): 726. 23. Herfst, S., E. J. Schrauwen, M. Linster, S. Chutinimitkul, E. de Wit, V. J. Munster, E. M. Sorrell, T. M. Bestebroer, D. F. Burke, D. J. Smith, G. F. Rimmelzwaan, A. D. Osterhaus and R. A. Fouchier (2012). 'Airborne transmission of influenza A/H5N1 virus between ferrets.' Science 336(6088): 1534-1541. 24. Ilyushina, N. A., E. A. Govorkova, T. E. Gray, N. V. Bovin and R. G. Webster (2008). 'Human-like receptor specificity does not affect the neuraminidase-inhibitor susceptibility of H5N1 influenza viruses.' PLoS Pathog 4(4): e1000043. 25. Kawaoka, Y. and R. G. Webster (1988). 'Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells.' Proceedings of the National Academy of Sciences of the United States of America 85(2): 324-328. 26. Klimka, A., L. Michels, E. Glowalla, B. Tosetti, M. Krönke and O. Krut (2015). 'Montanide ISA 71 VG is Advantageous to Freund's Adjuvant in Immunization Against S. aureus Infection of Mice.' Scand J Immunol 81(5): 291-297. 27. Kohonen, P., K. P. Nera and O. Lassila (2007). 'Avian model for B-cell immunology--new genomes and phylotranscriptomics.' Scand J Immunol 66(2-3): 113-121. 28. Koutsakos, M., K. Kedzierska and K. Subbarao (2019). 'Immune Responses to Avian Influenza Viruses.' The Journal of Immunology 202(2): 382 29. Krammer, F. (2019). 'The human antibody response to influenza A virus infection and vaccination.' Nature Reviews Immunology 19(6): 383-397. 30. Krammer, F., G. J. D. Smith, R. A. M. Fouchier, M. Peiris, K. Kedzierska, P. C. Doherty, P. Palese, M. L. Shaw, J. Treanor, R. G. Webster and A. García-Sastre (2018). 'Influenza.' Nature Reviews Disease Primers 4(1): 3. 31. Kumar, M., H. J. Chu, J. Rodenberg, S. Krauss and R. G. Webster (2007). 'Association of serologic and protective responses of avian influenza vaccines in chickens.' Avian Dis 51(1 Suppl): 481-483. 32. Levine, M. Z., C. Holiday, S. Jefferson, F. L. Gross, F. Liu, S. Li, D. Friel, P. Boutet, B. L. Innis, C. P. Mallett, T. M. Tumpey, J. Stevens and J. M. Katz (2019). 'Heterologous prime-boost with A(H5N1) pandemic influenza vaccines induces broader cross-clade antibody responses than homologous prime-boost.' NPJ Vaccines 4: 22. 33. Li, X., H. Ju, J. Liu, D. Yang, X. Qi, X. Yang, Y. Qiu, J. Zheng, F. Ge and J. Zhou (2017). 'Influenza virus-like particles harboring H9N2 HA and NA proteins induce a protective immune response in chicken.' Influenza Other Respir Viruses 11(6): 518-524. 34. Long, J. S., B. Mistry, S. M. Haslam and W. S. Barclay (2019). 'Host and viral determinants of influenza A virus species specificity.' Nature Reviews Microbiology 17(2): 67-81. 35. Mänz, B., M. Matrosovich, N. Bovin and M. Schwemmle (2010). 'A polymorphism in the hemagglutinin of the human isolate of a highly pathogenic H5N1 influenza virus determines organ tropism in mice.' J Virol 84(16): 8316-8321. 36. McAuley, J. L., B. P. Gilbertson, S. Trifkovic, L. E. Brown and J. L. McKimm-Breschkin (2019). 'Influenza Virus Neuraminidase Structure and Functions.' Frontiers in microbiology 10: 39-39. 37. McCormack, W. T., L. W. Tjoelker and C. B. Thompson (1991). 'Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion.' Annu Rev Immunol 9: 219-241. 38. McMichael, A. J., F. M. Gotch, G. R. Noble and P. A. S. Beare (1983). 'Cytotoxic T-Cell Immunity to Influenza.' New England Journal of Medicine 309(1): 13-17. 39. Naughtin, M., J. C. Dyason, S. Mardy, S. Sorn, M. von Itzstein and P. Buchy (2011). 'Neuraminidase inhibitor sensitivity and receptor-binding specificity of Cambodian clade 1 highly pathogenic H5N1 influenza virus.' Antimicrob Agents Chemother 55(5): 2004-2010. 40. Padilla-Quirarte, H. O., D. V. Lopez-Guerrero, L. Gutierrez-Xicotencatl and F. Esquivel-Guadarrama (2019). 'Protective Antibodies Against Influenza Proteins.' Frontiers in immunology 10: 1677-1677. 41. Palgen, J.-L., et al. (2020). 'Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations.' npj Vaccines 5(1): 24. 42. Pollard, A. J. and E. M. Bijker (2021). 'A guide to vaccinology: from basic principles to new developments.' Nature Reviews Immunology 21(2): 83-100. 43. Rajão, D. S. and D. R. Pérez (2018). 'Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture.' Front Microbiol 9: 123. 44. Ratcliffe, M. J. (2006). 'Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development.' Dev Comp Immunol 30(1-2): 101-118. 45. Raymond, D. D., G. Bajic, J. Ferdman, P. Suphaphiphat, E. C. Settembre, M. A. Moody, A. G. Schmidt and S. C. Harrison (2018). 'Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody.' Proceedings of the National Academy of Sciences 115(1): 168. 46. Reed, M. L., H. L. Yen, R. M. DuBois, O. A. Bridges, R. Salomon, R. G. Webster and C. J. Russell (2009). 'Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein.' J Virol 83(8): 3568-3580. 47. Senne, D. A., B. Panigrahy, Y. Kawaoka, J. E. Pearson, J. Süss, M. Lipkind, H. Kida and R. G. Webster (1996). 'Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential.' Avian Dis 40(2): 425-437. 48. Sims-Mourtada, J. C., L. Guzman-Rojas, R. Rangel, D. X. Nghiem, S. E. Ullrich, C. Guret, K. Cain and H. Martinez-Valdez (2003). 'In vivo expression of interleukin-8, and regulated on activation, normal, T-cell expressed, and secreted, by human germinal centre B lymphocytes.' Immunology 110(3): 296-303. 49. Stachyra, A., M. Pietrzak, A. Macioła, A. Protasiuk, M. Olszewska, K. Śmietanka, Z. Minta, A. Góra-Sochacka, E. Kopera and A. Sirko (2017). 'A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1.' Virus Res 232: 41-47. 50. Su, Y., H. Y. Yang, B. J. Zhang, H. L. Jia and P. Tien (2008). 'Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells.' Arch Virol 153(12): 2253-2261. 51. Swayne, D. and B. L. Akey (2005). 'Avian influenza control strategies in the United States of America.' Frontis 8. 52. Swayne, D. E. (2007). 'Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds.' Avian Dis 51(1 Suppl): 242-249. 53. Swayne, D. E. (2009). 'Avian influenza vaccines and therapies for poultry.' Comp Immunol Microbiol Infect Dis 32(4): 351-363. 54. Swayne, D. E. (2012). 'Impact of vaccines and vaccination on global control of avian influenza.' Avian Dis 56(4 Suppl): 818-828. 55. Te Velthuis, A. J. and E. Fodor (2016). 'Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis.' Nat Rev Microbiol 14(8): 479-493. 56. Terajima, M., M. D. T. Cruz J Fau - Co, J.-H. Co Md Fau - Lee, K. Lee Jh Fau - Kaur, J. Kaur K Fau - Wrammert, P. C. Wrammert J Fau - Wilson, F. A. Wilson Pc Fau - Ennis and F. A. Ennis 'Complement-dependent lysis of influenza a virus-infected cells by broadly cross-reactive human monoclonal antibodies.' (1098-5514 (Electronic)). 57. Truelove, S., H. Zhu, J. Lessler, S. Riley, J. M. Read, S. Wang, K. O. Kwok, Y. Guan, C. Q. Jiang and D. A. T. Cummings (2016). 'A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A.' Influenza and other respiratory viruses 10(6): 518-524. 58. Vanderven, H. A., F. Ana-Sosa-Batiz, S. Jegaskanda, S. Rockman, K. Laurie, I. Barr, W. Chen, B. Wines, P. M. Hogarth, T. Lambe, S. C. Gilbert, M. S. Parsons and S. J. Kent (2016). 'What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.' EBioMedicine 8: 277-290. 59. Von Holle, T. A. and M. A. Moody (2019). 'Influenza and Antibody-Dependent Cellular Cytotoxicity.' Frontiers in Immunology 10: 1457. 60. Winarski, K. L., N. J. Thornburg, Y. Yu, G. Sapparapu, J. E. Crowe and B. W. Spiller (2015). 'Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites.' Proceedings of the National Academy of Sciences 112(30): 9346. 61. Yamada, S., Y. Suzuki, T. Suzuki, M. Q. Le, C. A. Nidom, Y. Sakai-Tagawa, Y. Muramoto, M. Ito, M. Kiso, T. Horimoto, K. Shinya, T. Sawada, M. Kiso, T. Usui, T. Murata, Y. Lin, A. Hay, L. F. Haire, D. J. Stevens, R. J. Russell, S. J. Gamblin, J. J. Skehel and Y. Kawaoka (2006). 'Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors.' Nature 444(7117): 378-382. 62. Yang, H., L.-M. Chen, P. J. Carney, R. O. Donis and J. Stevens (2010). 'Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site.' PLoS pathogens 6(9): e1001081-e1001081. 63. Ye, Y., B. Gaugler, M. Mohty and F. Malard (2020). 'Plasmacytoid dendritic cell biology and its role in immune-mediated diseases.' Clinical Translational Immunology 9(5): e1139. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80932 | - |
| dc.description.abstract | H5高致病性禽流感病毒自1996年出現,並在1997年造成香港的流行禽類之間的流行外,也有人類傳染的案例。自此,人類開始關注高致病性禽流感病毒的變化。直到2018年,H5高致病禽流感病毒已經演化至分支2.3.4.4,並在全球造成超過8000萬隻雞禽的死亡。雞禽的大量死亡,以及可能造成人類傳染的風險,說明了禽流感疫苗的製造的重要性。 目前的疫苗設計是根據當前流行的禽流感病毒種類來進行設計,但是根據單一病毒株所設計的禽流感疫苗所提供的保護力通常是專一於單一病毒株(Strain specific)。了解調整疫苗施打的條件如何影響疫苗產生保護力,可以作為未來發展更有效疫苗的基礎。在先前實驗室的研究當中,利用去活化重組H5N1/RG6疫苗病毒株,以乳化型71VG為佐劑,對七日齡的雛雞進行皮下注射,並分別在初次疫苗接種後第一、二週進行補強接種。結果顯示,相較在於第一週進行補強接種,在第二週補強接種可以有效的提升血球凝集抑制效價,並增加對於其他分支的H5禽流感病毒的保護力。 本論文研究使用相同的疫苗以及接種時程,進一步利用血球凝集抑制反應和抗體中和反應來探討疫苗接種時程對於血清中針對禽流感病毒的抗體反應的影響。由於血球凝集抑制測試只能檢測血清中的anti-HA head antibody,而抗體中和測試可以檢測血清中influenza virus neutralizing antibody,因此造成兩種抗體測試的檢測結果的差異性。透過兩種抗體中和測試的比較,可以進一步了解疫苗接種對於血清中的抗體組成的影響。實驗結果顯示,相較於進行一劑疫苗接種的組別,進行補強接種的組別表現較高的血球凝集抑制效價和抗體中和效價。進一步比較補強接種的組別,相較於在第一週進行補強接種的組別,在第二週進行補強接種的組別的血球凝集抑制效價和抗體中和效價皆有較高的表現。從結果推測,在不同時間點進行補強接種,對於受疫苗刺激而產生的抗體組成並無明顯的影響,但是增加兩劑疫苗接種的時間間隔可以有效增加抗體效價。此現象可能是由於因第一劑疫苗接種而活化的先天性免疫細胞,會隨著時間逐漸增加,進而促進更高的抗體效價產生。 總結上述結果,在本研究中利用血球凝集抑制測試和抗體中和測試檢測不同疫苗接種時程對於抗體反應的影響,發現增加兩劑疫苗接種的時間間隔可以提高血清針對rRG6禽流感病毒的抗體效價。此外,進行一劑疫苗接種的組別在疫苗接種後的第二週,血清的抗體中和效價和血球凝集抑制效價在關聯性分析中呈現負相關,可能代表血清中的抗體可能以anti-HA stem antibody為主。由於anti-HA stem antibody相較於anti-HA head antibody針對H5禽流感病毒有較高的廣效性中和能力,因此如何透過改變疫苗接種方式來增加血清中的anti-HA stem antibody,從而增加對於其他種類的H5禽流感病毒的交叉保護力,為未來禽流感疫苗設計的方向之一。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:22:30Z (GMT). No. of bitstreams: 1 U0001-1309202122290500.pdf: 1452003 bytes, checksum: 2e577647060df8d71983b0a0bcb85577 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 i 中文摘要 ii Abstract iv Figure content ix Ⅰ.簡介 1 1.1禽流感病毒 1 1.1.1禽流感病毒的感染機制 2 1.1.2禽流感病毒的分類 3 1.1.3 針對禽流感病毒的預防和保護措施 4 1.1.4家禽的禽流感疫苗 6 1.2禽流感病毒誘發的免疫反應 8 1.2.1先天性免疫反應 8 1.2.2 後天性免疫反應 9 1.2.3抗體在禽流感病毒感染過程中所扮演的角色 10 1.2.4中和抗體在禽流感病毒感染過程所扮演的角色 12 1.2.5 補強疫苗接種對於抗體產生的影響 13 1.2.6檢測流感疫苗效價的方式 15 1.3 禽類抗體的產生 16 1.3.1 禽類B細胞的發育 16 1.3.2 禽類抗體的產生 17 II . 研究目的 20 2.1.1 不同時間點進行補強接種對於保護力的影響 20 Ⅲ. 材料與方法 22 3.1 材料 22 3.1.1 血球凝集抑制使用抗原 22 3.1.2 培養液與溶液 22 3.1.3 化學藥品與試劑 24 3.2 方法 24 3.2.1 雞隻 24 3.2.2疫苗抗原 25 3.2.3疫苗佐劑 25 3.2.4 疫苗施打與樣本收集 26 3.2.5 血球凝集抑制反應 26 3.2.6 病毒溶斑測試 27 3.2.7抗體中和反應 28 Ⅳ. 結果 30 4.1 補強接種對於抗體效價的影響 30 4.1.1 rRG6 immunization schedule 30 4.1.2 rRG6禽流感病毒製備及定量 30 4.1.3以血球凝集抑制測試檢測疫苗接種對於抗體效價的影響 31 4.1.4中和抗體條件測試 32 4.1.5 以中和抗體測試檢測疫苗接種對於抗體效價的影響 33 4.1.6血球凝集抑制效價和抗體中和效價的關聯性 34 Ⅴ. 討論 35 VI. 相關資料 37 Figure content Figure1. Immunization schedule…………………………………………………………44 Figure 2. rRG6禽流感病毒製備及定量……………………………………………….. 45 Figure 3. 以血球凝集抑制測試檢測疫苗接種對於針對rRG6抗體效價的影響……..47 Figure 4. 測試Microneutralization assay實驗條件………...……………………….... .48 Figure 5. 以Microneutralization assay測試immunization schedule對於antibody response的影響 ………………………………...…………………………………….....49 Figure 6. Microneutralization assay和HI assay的關聯性分析…………………………50 | |
| dc.language.iso | zh-TW | |
| dc.subject | anti-HA stem antibody | zh_TW |
| dc.subject | 禽流感病毒 | zh_TW |
| dc.subject | 分支2.3.4.4 H5病毒 | zh_TW |
| dc.subject | 疫苗 | zh_TW |
| dc.subject | clade 2.3.4.4 H5 virus | en |
| dc.subject | vaccine | en |
| dc.subject | anti-HA stem antibody | en |
| dc.subject | avian influenza virus | en |
| dc.title | 探討H5禽流感疫苗接種時程對抗體反應之影響 | zh_TW |
| dc.title | Investigation on antibody response induced by different immunization schedules against H5 avian influenza virus | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李建國(Hsin-Tsai Liu),蕭培文(Chih-Yang Tseng) | |
| dc.subject.keyword | 禽流感病毒,分支2.3.4.4 H5病毒,疫苗,anti-HA stem antibody, | zh_TW |
| dc.subject.keyword | avian influenza virus,clade 2.3.4.4 H5 virus,vaccine,anti-HA stem antibody, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202103157 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1309202122290500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
