Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorChien-Fu Leeen
dc.contributor.author李建甫zh_TW
dc.date.accessioned2022-11-24T03:17:08Z-
dc.date.available2024-10-31
dc.date.available2022-11-24T03:17:08Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-10-06
dc.identifier.citation1. Cao, F., G.-L. Song, and A. Atrens, Corrosion and passivation of magnesium alloys. Corrosion Science, 2016. 111: p. 835-845. 2. Williams, G., et al., The influence of arsenic alloying on the localised corrosion behaviour of magnesium. Electrochimica Acta, 2016. 219: p. 401-411. 3. Sherif, E.M. and A.A. Almajid, Corrosion of magnesium/manganese alloy in chloride solutions and its inhibition by 5-(3-aminophenyl)-tetrazole. International Journal of Electrochemical Science, 2011. 6(6): p. 2131-2148. 4. Zhou, Y.-r., et al., Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2016. 26(11): p. 2976-2987. 5. Shao, Z., et al., The study of electroless nickel plating directly on magnesium alloy. Surface and Coatings Technology, 2014. 249: p. 42-47. 6. Khalifeh, S. and T.D. Burleigh, Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants. Journal of Magnesium and Alloys, 2018. 6(4): p. 327-336. 7. Shi, Z., G. Song, and A. Atrens, Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corrosion Science, 2006. 48(8): p. 1939-1959. 8. Gu, C.D., et al., Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride—Urea based deep eutectic solvent. Corrosion Science, 2016. 106: p. 108-116. 9. Jiang, X., R. Guo, and S. Jiang, Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys, 2016. 4(3): p. 230-241. 10. Deyab, M.A., et al., Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogenphosphate compound. Progress in Organic Coatings, 2017. 107: p. 37-42. 11. Figueira, R.B., C.J.R. Silva, and E.V. Pereira, Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. Journal of Coatings Technology and Research, 2014. 12(1): p. 1-35. 12. El-Hadad, A.A., et al., Influence of substrate composition on corrosion protection of sol–gel thin films on magnesium alloys in 0.6M NaCl aqueous solution. Progress in Organic Coatings, 2014. 77(11): p. 1642-1652. 13. Murillo-Gutiérrez, N.V., et al., Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating. Surface and Coatings Technology, 2013. 232: p. 606-615. 14. Zhang, S., et al., Preparation and corrosion resistance studies of nanometric sol–gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy. Electrochimica Acta, 2010. 55(3): p. 870-877. 15. Tan, A.L.K., et al., Multilayer sol–gel coatings for corrosion protection of magnesium. Surface and Coatings Technology, 2005. 198(1-3): p. 478-482. 16. Zhang, S., et al., Novel composite films prepared by sol–gel technology for the corrosion protection of AZ91D magnesium alloy. Progress in Organic Coatings, 2009. 66(3): p. 328-335. 17. Li, Q., Sol-gel coatings to improve the corrosion resistance of magnesium (Mg) alloys, in Corrosion Prevention of Magnesium Alloys. 2013. p. 469-485. 18. Lamaka, S.V., et al., Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochimica Acta, 2008. 53(14): p. 4773-4783. 19. Zhong, X., et al., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008. 50(8): p. 2304-2309. 20. Skinner, B.J., A Second Iron Age Ahead? The distribution of chemical elements in the earth's crust sets natural limits to man's supply of metals that are much more important to the future of society than limits on energy. American Scientist, 1976. 64(3): p. 258-269. 21. Shigley, C.M., Minerals from the Sea. JOM, 1951. 3(1): p. 25-29. 22. Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-34. 23. Kirkland, N.T., N. Birbilis, and M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater, 2012. 8(3): p. 925-36. 24. Li, N. and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science Technology, 2013. 29(6): p. 489-502. 25. Chen, Y., et al., Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater, 2014. 10(11): p. 4561-4573. 26. Abdal-hay, A., et al., Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications. Ceramics International, 2014. 40(1): p. 2237-2247. 27. Schulz, R.B., V.C. Plantz, and D.R. Brush, Shielding theory and practice. IEEE Transactions on Electromagnetic Compatibility, 1988. 30(3): p. 187-201. 28. Avedesian, M.M. and H. Baker, ASM specialty handbook: magnesium and magnesium alloys. 1999: ASM international. 29. Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193. 30. Esmaily, M., et al., Effect of Rheocasting on Corrosion of AM50 Mg Alloy. Journal of The Electrochemical Society, 2014. 162(3): p. C85-C95. 31. Esmaily, M., et al., Atmospheric Corrosion of Mg Alloy AZ91D Fabricated by a Semi-Solid Casting Technique: The Influence of Microstructure. Journal of The Electrochemical Society, 2015. 162(7): p. C311-C321. 32. Esmaily, M., et al., New insights into the corrosion of magnesium alloys — The role of aluminum. Scripta Materialia, 2016. 115: p. 91-95. 33. Song, G., A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1998. 41(2): p. 249-273. 34. Yu, B.-L. and J.-Y. Uan, Correlating the microstructure of the die-chill skin and the corrosion properties for a hot-chamber die-cast AZ91D magnesium alloy. Metallurgical and Materials Transactions A, 2005. 36(8): p. 2245-2252. 35. Massalski, T. and P. Subramanian, Hf (Hafnium) Binary Alloy Phase Diagrams. 1990: ASM international Cleveland. 36. Chang, T.-C., et al., Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters, 2006. 60(27): p. 3272-3276. 37. Zou, Y., et al., Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates. Journal of Alloys and Compounds, 2018. 735: p. 2625-2633. 38. Yang, L., et al., Effect of iron content on the corrosion of pure magnesium: Critical factor for iron tolerance limit. Corrosion Science, 2018. 139: p. 421-429. 39. Li, C.Q., et al., Influence of the lithium content on the negative difference effect of Mg-Li alloys. Journal of Materials Science Technology, 2020. 57: p. 138-145. 40. Song, G.L. and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999. 1(1): p. 11-33. 41. Cai, S., et al., Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Materials Science and Engineering: C, 2012. 32(8): p. 2570-2577. 42. Li, H., et al., The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2016. 25(9): p. 3890-3895. 43. Jingyuan, Y., et al., Effect of Zn on Microstructures and Properties of Mg-Zn Alloys Prepared by Powder Metallurgy Method. Rare Metal Materials and Engineering, 2016. 45(11): p. 2757-2762. 44. Cao, F., et al., Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corrosion Science, 2013. 75: p. 78-99. 45. Hofstetter, J., et al., Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corrosion Science, 2015. 91: p. 29-36. 46. Han, G., et al., Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. Corrosion Science, 2012. 63: p. 316-322. 47. Gandel, D.S., et al., CALPHAD simulation of the Mg–(Mn, Zr)–Fe system and experimental comparison with as-cast alloy microstructures as relevant to impurity driven corrosion of Mg-alloys. Materials Chemistry and Physics, 2014. 143(3): p. 1082-1091. 48. Fontana, M.G. and N.D. Greene, Corrosion engineering [by] Mars G. Fontana [and] Norbert D. Greene. 1967, New York: McGraw-Hill. 49. Bardal, E., Corrosion and protection. 2007: Springer Science Business Media. 50. Song, G., et al., The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science, 1997. 39(5): p. 855-875. 51. Song, G. and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials, 2003. 5(12): p. 837-858. 52. Song, G., Recent Progress in Corrosion and Protection of Magnesium Alloys. Advanced Engineering Materials, 2005. 7(7): p. 563-586. 53. Yuwono, J.A., et al., Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles. Corrosion Science, 2019. 147: p. 53-68. 54. Liu, M., et al., A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science, 2009. 51(5): p. 1115-1127. 55. Baril, G.v., et al., An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions. Journal of The Electrochemical Society, 2007. 154(2). 56. Taheri, M., et al., Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS. Corrosion Science, 2012. 59: p. 222-228. 57. Taheri, M., M. Danaie, and J.R. Kish, TEM Examination of the Film Formed on Corroding Mg Prior to Breakdown. Journal of The Electrochemical Society, 2013. 161(3): p. C89-C94. 58. Taheri, M., et al., Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochimica Acta, 2014. 116: p. 396-403. 59. Brady, M.P., et al., Tracer Film Growth Study of Hydrogen and Oxygen from the Corrosion of Magnesium in Water. Journal of The Electrochemical Society, 2014. 161(9): p. C395-C404. 60. Brady, M.P., et al., Film Breakdown and Nano-Porous Mg(OH)2Formation from Corrosion of Magnesium Alloys in Salt Solutions. Journal of The Electrochemical Society, 2015. 162(4): p. C140-C149. 61. Nordlien, J.H., et al., A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 1997. 39(8): p. 1397-1414. 62. Baril, G. and N. Pébère, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science, 2001. 43(3): p. 471-484. 63. Curioni, M. and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium. Electrochimica Acta, 2015. 180: p. 712-721. 64. Beetz, W.J.T.L., Edinburgh,, D.P. Magazine, and J.o. Science, XXXIV. On the development of hydrogen from the anode. 1866. 32(216): p. 269-278. 65. Petty, R.L., A.W. Davidson, and J.J.J.o.t.A.C.S. Kleinberg, The anodic oxidation of magnesium metal: evidence for the existence of unipositive magnesium. 1954. 76(2): p. 363-366. 66. Atrens, A. and W. Dietzel, The Negative Difference Effect and Unipositive Mg+. Advanced Engineering Materials, 2007. 9(4): p. 292-297. 67. Samaniego, A., B.L. Hurley, and G.S. Frankel, On the evidence for univalent Mg. Journal of Electroanalytical Chemistry, 2015. 737: p. 123-128. 68. Song, G., et al., The anodic dissolution of magnesium in chloride and sulphate solutions. 1997. 39(10-11): p. 1981-2004. 69. Marsh, G.A. and E. Schaschl, The Difference Effect and the Chunk Effect. Journal of The Electrochemical Society, 1960. 107(12): p. 960. 70. Williams, G. and H. Neil McMurray, Localized Corrosion of Magnesium in Chloride-Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique. Journal of The Electrochemical Society, 2008. 155(7): p. C340. 71. Yang, Y., F. Scenini, and M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica Acta, 2016. 198: p. 174-184. 72. Curioni, M., The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2014. 120: p. 284-292. 73. Curioni, M., et al., Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2015. 166: p. 372-384. 74. Curioni, M., et al., Application of side-view imaging and real-time hydrogen measurement to the investigation of magnesium corrosion. 2017. 73(5): p. 463-470. 75. Curioni, M., et al., A mathematical description accounting for the superfluous hydrogen evolution and the inductive behaviour observed during electrochemical measurements on magnesium. Electrochimica Acta, 2018. 274: p. 343-352. 76. Tunold, R., et al., The corrosion of magnesium in aqueous solution containing chloride ions. 1977. 17(4): p. 353-365. 77. Lebouil, S., et al., A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution. Electrochimica Acta, 2014. 124: p. 176-182. 78. Zeng, R.-C., et al., Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014. 86: p. 171-182. 79. Yamamoto, A., T. Terawaki, and H. Tsubakino, Microstructures and Corrosion Properties on Fluoride Treated Magnesium Alloy. Materials Transactions, 2008. 49(5): p. 1042-1047. 80. Zeng, R.-c., et al., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: p. s763-s771. 81. Pardo, A., et al., Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochimica Acta, 2008. 53(27): p. 7890-7902. 82. Wang, L., T. Shinohara, and B.-P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010. 496(1-2): p. 500-507. 83. Acharya, M.G. and A.N. Shetty, The corrosion behavior of AZ31 alloy in chloride and sulfate media – A comparative study through electrochemical investigations. Journal of Magnesium and Alloys, 2019. 7(1): p. 98-112. 84. Song, Y., et al., The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corrosion Science, 2012. 65: p. 322-330. 85. Danaie, M., et al., The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy. Corrosion Science, 2013. 77: p. 151-163. 86. Cao, F., et al., The Inhibitive Effect of Artificial Seawater on Magnesium Corrosion. Advanced Engineering Materials, 2019. 21(8). 87. Yang, L.-j., et al., Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science, 2010. 52(2): p. 345-351. 88. Lamaka, S.V., et al., Comprehensive screening of Mg corrosion inhibitors. Corrosion Science, 2017. 128: p. 224-240. 89. Nwaogu, U.C., et al., Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corrosion Science, 2010. 52(6): p. 2143-2154. 90. Cain, T., et al., Evidence of the Enrichment of Transition Metal Elements on Corroding Magnesium Surfaces Using Rutherford Backscattering Spectrometry. Journal of The Electrochemical Society, 2015. 162(6): p. C228-C237. 91. Cain, T.W., et al., The Role of Surface Films and Dissolution Products on the Negative Difference Effect for Magnesium: Comparison of Cl−versus Cl−Free Solutions. Journal of The Electrochemical Society, 2017. 164(6): p. C300-C311. 92. Patnaik, P., Handbook of inorganic chemicals. Vol. 529. 2003: McGraw-Hill New York. 93. Li, J.-z., et al., Corrosion action and passivation mechanism of magnesium alloy in fluoride solution. Transactions of Nonferrous Metals Society of China, 2009. 19(1): p. 50-54. 94. Friedrich, H.E. and B.L. Mordike, Magnesium technology. Vol. 212. 2006: Springer. 95. Hagans, P.L. and C.J.A.H. Haas, Chromate conversion coatings. 1994. 5: p. 405-411. 96. Hughes, A., et al., Chromate conversion coatings on 2024 Al alloy. 1997. 25(4): p. 223-234. 97. Xia, L., et al., Storage and release of soluble hexavalent chromium from chromate conversion coatings equilibrium aspects of Cr VI concentration. 2000. 147(7): p. 2556. 98. Directive, E.J.O.J.E.C., Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). 2013. 46: p. 19-23. 99. Milošev, I. and G.S. Frankel, Review—Conversion Coatings Based on Zirconium and/or Titanium. Journal of The Electrochemical Society, 2018. 165(3): p. C127-C144. 100. Verdier, S., et al., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Applied Surface Science, 2004. 235(4): p. 513-524. 101. Verdier, S., et al., Monochromatized x-ray photoelectron spectroscopy of the AM60 magnesium alloy surface after treatments in fluoride-based Ti and Zr solutions. Surface and Interface Analysis, 2005. 37(5): p. 509-516. 102. Verdier, S., et al., An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings. Surface and Coatings Technology, 2006. 200(9): p. 2955-2964. 103. Talha, M., et al., Recent Advancements in Corrosion Protection of Magnesium Alloys by Silane-Based Sol–Gel Coatings. Industrial Engineering Chemistry Research, 2020. 59(45): p. 19840-19857. 104. Avnir, D. and V.R.J.J.o.n.-c.s. Kaufman, Alcohol is an unnecessary additive in the silicon alkoxide sol-gel process. 1987. 92(1): p. 180-182. 105. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press. 106. Cheng, S.-Y., Study of hybrid materials composed of PMMA and silica prepared via the sol-gel technique, in Department of Materials and Optoelectronic Science. 2001, National Sun Yat-sen University. 107. Brinker, C.J.J.J.o.n.-c.s., Hydrolysis and condensation of silicates: effects on structure. 1988. 100(1-3): p. 31-50. 108. Brinker, C., et al., Fundamentals of sol-gel dip coating. 1991. 201(1): p. 97-108. 109. Landau, L. and B. Levich, Dragging of a liquid by a moving plate, in Dynamics of curved fronts. 1988, Elsevier. p. 141-153. 110. Scriven, L.J.M.O.P.L., Physics and applications of dip coating and spin coating. 1988. 121. 111. Asadi, N., R. Naderi, and M. Saremi, Effect of Curing Conditions on the Protective Performance of an Ecofriendly Hybrid Silane Sol–Gel Coating with Clay Nanoparticles Applied on Mild Steel. Industrial Engineering Chemistry Research, 2014. 53(26): p. 10644-10652. 112. Nezamdoust, S., D. Seifzadeh, and Z. Rajabalizadeh, Application of novel sol–gel composites on magnesium alloy. Journal of Magnesium and Alloys, 2019. 7(3): p. 419-432. 113. Cassie, A. and S.J.T.o.t.F.s. Baxter, Wettability of porous surfaces. 1944. 40: p. 546-551. 114. Sevonkaev, I. and E. Matijevic, Formation of magnesium fluoride particles of different morphologies. Langmuir, 2009. 25(18): p. 10534-9. 115. Schultz, M. and W.J.S.s.i. Burckhardt, The isoelectric point of pure and doped zirconia in relation to the preparation route. 1993. 63: p. 18-24.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80802-
dc.description.abstract因環保節能等等的環境議題逐漸受到重視,鎂合金的高比強度、高導電導熱率、及生物可降解等等特性成為了一個未來發展的重點項目。然而鎂合金本身的高化學活性使其在應用方面增加了不少限制和條件,因此如何環保且有效的提升鎂合金的抗蝕性將是需要面對的問題。本研究嘗試使用六氟鋯酸鹽化成結合溶膠凝膠的複合製成來達到環保且抗蝕的效果。研究主要分為前後兩部分:前半將討論AZ31B經過不同pH值六氟鋯酸化成後的表面形貌及特性,後半則會討論後續進行溶膠凝膠處理後抗蝕性的變化及腐蝕行為。 研究結果發現,pH4為六氟鋯酸化成的一個重要分界,原因在ZrO2穩定存在的酸鹼值區間在pH4以上。pH4以下的化成條件使得較鈍態的雜質Al8Mn5以外的相對陽極區難以形成均勻的膜層結構而持續造成底材溶出,而雜質處因大量的還原反應有較多的ZrO2覆蓋。反之pH4以上即便在相對陽極處也可以有ZrO2沉積,而形成相對較穩定且連續的鈍化膜。其中pH值造成的ZrO2沉積成核點數量及沉積速率差異使得在不同pH值下所形成的鈍化膜結構其表面疏水性也會也有明顯不同,而表面疏水性造成的溶膠凝膠膜厚差異會大幅影響溶膠凝膠阻水阻氣的效果。 最後的腐蝕行為分析可以看到複合製成雖然可以有效提升鎂合金的抗蝕性,但Al8Mn5雜質處因不論在任何pH值下皆會因為有較厚的ZrO2沉積及劇烈的析氫反應使其周圍的膜層有較多的缺陷,因此腐蝕攻擊皆會出現在雜質附近。若要提升此複合製成的抗蝕效果,如何減少雜質造成的活性差異將會是需要解決的問題。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:17:08Z (GMT). No. of bitstreams: 1
U0001-0610202104020000.pdf: 7543741 bytes, checksum: 9f5069249125c1e92b8ec9a22d480d3a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i Abstract ii 總目錄 iv 圖目錄 vii 表目錄 xi 第一章 前言 1 第二章 文獻回顧 3 2.1. 鎂合金簡介 3 2.2. 鎂合金系統 4 2.2.1. 添加鋁的影響 4 2.2.2. 添加鋰的影響 6 2.2.3. 添加鋅的影響 7 2.2.4. 添加錳的影響 9 2.3. 鎂合金腐蝕 10 2.3.1. 腐蝕分類 10 2.3.2. 鎂合金腐蝕產物 12 2.3.3. 負差值效應 15 2.3.4. 腐蝕環境離子影響 19 2.4. 鎂合金化成處理 22 2.4.1. 鉻酸鹽化成處理 23 2.4.2. 鋯鈦酸鹽化成處理 24 2.4.3. 溶膠凝膠化成處理 26 第三章 實驗步驟與方法 34 3.1. 試片前處理 34 3.2. 化成溶液配置 34 3.3. 即時攝影 36 3.4. 光學影像 36 3.5. 微結構分析 36 3.5.1. 表面形貌觀察 36 3.5.2. 橫截面影像觀察 37 3.5.3. 化學組成分析 37 3.6. 抗蝕性分析 38 3.6.1. 開路電位量測 38 3.6.2. 電化學交流阻抗分析 38 3.6.3. 動電位極化曲線分析 39 3.6.4. 接觸角測試 39 3.6.5. 析氫試驗 40 3.6.6. 鹽霧試驗 40 3.6.7. 硫酸銅試驗 40 第四章 實驗結果與討論 41 4.1. 溶膠凝膠化成膜分析 41 4.1.1. 表面形貌影像觀察 41 4.2. 不同pH值六氟鋯酸化成膜分析 43 4.2.1. 表面形貌影像觀察 43 4.2.2. 開路電位分析 47 4.2.3. 電化學交流阻抗 48 4.2.4. 動電位極化曲線 51 4.2.5. 析氫試驗分析 52 4.2.6. 接觸角測試 53 4.3. 不同pH值六氟鋯酸化成與溶膠凝膠複合製成分析 54 4.3.1. 表面形貌影像觀察 54 4.3.2. 橫截面之影像觀察 55 4.3.3. 電化學交流阻抗 57 4.3.4. 動電位極化曲線 60 4.3.5. 析氫試驗分析 61 4.4. 六氟鋯酸化成與溶膠凝膠複合製成腐蝕行為分析 63 4.4.1. 表面形貌影像觀察 63 4.4.2. 橫截面影像觀察 65 4.4.3. 硫酸銅測試 68 4.4.4. 析氫試驗分析 71 4.4.5. 鹽霧試驗 74 第五章 結論 75 第六章 未來展望 76 參考文獻 77
dc.language.isozh-TW
dc.subject溶膠凝膠鍍層zh_TW
dc.subject抗蝕性zh_TW
dc.subject鋯化合物化成處理zh_TW
dc.subject電化學zh_TW
dc.subject鎂合金zh_TW
dc.subjectelectrochemistryen
dc.subjectmagnesium alloyen
dc.subjectzirconium conversion coatingen
dc.subjectsol-gel coatingen
dc.subjectcorrosion resistanceen
dc.titleAZ31B鎂合金鋯酸與矽氧烷複合處理之腐蝕行為研究zh_TW
dc.titleThe Corrosion Behavior of Hexafluorozirconic Acid and Silane Composite Coating on AZ31B Magnesium Alloyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡文達(Hsin-Tsai Liu),林景崎(Chih-Yang Tseng),葛明德,汪俊延
dc.subject.keyword鎂合金,鋯化合物化成處理,溶膠凝膠鍍層,抗蝕性,電化學,zh_TW
dc.subject.keywordmagnesium alloy,zirconium conversion coating,sol-gel coating,corrosion resistance,electrochemistry,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202103571
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2024-10-31-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0610202104020000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved