請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌(Been-huang Chiang) | |
| dc.contributor.author | Shin-Yu Lin | en |
| dc.contributor.author | 林心妤 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:07:20Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-24T03:07:20Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-11-04 | |
| dc.identifier.citation | Aguilar‐Uscanga, B., and J. M. Francois. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. 2003 Letters in applied microbiology 37, no. 3, 268-274. Alexandre, Herve, and M. I. C. H. È. L. E. GUILLOUX‐BENATIER. Yeast autolysis in sparkling wine–a review. 2006 Australian Journal of Grape and Wine Research 12, no. 2, 119-127. Anderson, R. C., Cookson, A. L., McNabb, W. C., Park, Z., McCann, M. J., Kelly, W. J., Roy, N. C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. 2010 BMC Microbiology, 10(1), 1-11. Anwar, M. I., Muhammad, F., Awais, M. M., Akhtar, M. A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. 2017 World's Poultry Science Journal, 73(3), 651-661. Bzducha-Wróbel, A., Błażejak, S., Kawarska, A., Stasiak-Różańska, L., Gientka, I., Majewska, E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. 2014 Molecules, 19(12), 20941-20961. Blanpain, Cédric, Valerie Horsley, Elaine Fuchs. Epithelial stem cells: turning over new leaves. 2007 Cell 128, no. 3, 445-458. Beutler, Bruce, and Ernst Th Rietschel. Innate immune sensing and its roots: the story of endotoxin. 2003 Nature Reviews Immunology 3, no. 2: 169-176. Breckpot, K., Escors, D. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. 2009 Endocrine, 89 Metabolic Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine Metabolic Disorders), 9(4), 328-343. Brown, Gordon D., Siamon Gordon. Immune recognition of fungal β‐glucans. 2005 Cellular Microbiology 7, no. 4, 471-479. Broadway, Paul R., Jeffery A. Carroll, Nicole C. Burdick Sanchez. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. 2015 Microorganisms 3, no. 3, 417-427. Boonyeun, Phungjai, Artiwan Shotipruk, Chattip Prommuak, Manop Suphantharika, and Chirakarn Muangnapoh. Enhancement of amino acid production by two-step autolysis of spent brewer's yeast. 2011 Chemical Engineering Communications 198, no. 12, 1594-1602. Batbayar, Sainkhuu, Dong Hee Lee, Ha Won Kim. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. 2012 Biomolecules therapeutics 20, no. 5: 433. Cano-Canchola, C. A. R. M. E. N., L. U. I. S. Sosa, W. I. L. L. I. A. M. Fonzi, P. A. U. L. Sypherd, J. O. S. E. Ruiz-Herrera. Developmental regulation of CUP gene expression through DNA methylation in Mucor spp. 1992 Journal of Bacteriology 174, no. 2, 362-366. Cabib, Enrico, Dong-Hyun Roh, Martin Schmidt, Luciana B. Crotti, and Archana Varma. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. 2001 Journal of Biological Chemistry 276, no. 23, 19679-19682. Cho, Kyung-Lae, Hye-Jin Woo, In-Sook Lee, Jun-Won Lee, Young-Cheol Cho, Il-Nam Lee, Hee-Jeong Chae. Optimization of enzymatic pretreatment for the production of fermented ginseng using leaves, stems and roots of ginseng. 2010 Journal of Ginseng Research 34, no. 1, 68-75. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D., Maniatis, T. Transcriptional regulation of endothelial cell adhesion molecules: NF‐κB and cytokine‐inducible enhancers. 1995 The FASEB Journal, 9(10), 899-909. Cui, Z. H. U., W. A. N. G. Li, Shao-yong WEI, C. H. E. N. Zhuang, Chun-tian ZHENG, Zong-yong JIANG. 'Effect of yeast Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets. 2017 Journal of Integrative Agriculture 16, no. 9, 2029-2037. Denizot, Francois, and Rita Lang. 'Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.' 1986 Journal of Immunological Methods 89, no. 2271-277. Del Cornò, M., Gessani, S., Conti, L. Shaping the innate immune response by dietary glucans: any role in the control of cancer? 2020 Cancers, 12(1), 155. Dong, Y., Hu, J., Fan, L., Chen, Q. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. 2017 Scientific Reports, 7(1), 1-16. Etienne-Mesmin, Lucie, Benoit Chassaing, Pierre Sauvanet, Jérémy Denizot, Stéphanie Blanquet-Diot, Arlette Darfeuille-Michaud, Nathalie Pradel, Valérie Livrelli. Interactions with M cells and macrophages as key steps in the pathogenesis of enterohemorragic Escherichia coli infections. 2011 PloS one 6, no. 8, e23594. Fleet, Graham H., and David J. Manners. The enzymic degradation of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. 1977 Microbiology 98, no. 2: 315-327. Freimund, Stefan, Martin Sauter, Othmar Käppeli, Hans Dutler. A new non-degrading isolation process for 1, 3-β-D-glucan of high purity from baker's yeast Saccharomyces cerevisiae. 2003 Carbohydrate Polymers 54, no. 2, 159-171. Ganner, Anja, and Gerd Schatzmayr. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. 2012 Applied Microbiology and Biotechnology 95, no. 2, 289-297. Gershanik, T., E. Haltner, C-M. Lehr, S. Benita. Charge-dependent interaction of self-emulsifying oil formulations with Caco-2 cells monolayers: binding, effects on barrier function and cytotoxicity. 2000 International Journal of Pharmaceutics 211, no. 1-2, 29-36. Goodridge, Helen S., Christopher N. Reyes, Courtney A. Becker, Tamiko R. Katsumoto, Jun Ma, Andrea J. Wolf, Nandita Bose. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. 2011 Nature 472, no. 7344: 471-475. Griffith, Thomas S., Steven R. Wiley, Marek Z. Kubin, Lisa M. Sedger, Charles R. Maliszewski, and Neil A. Fanger. Monocyte-mediated tumoricidal activity via the tumor necrosis factor–related cytokine, TRAIL. 1999 The Journal of experimental medicine 189, no. 8, 1343-1354. Hering, Nina A., Michael Fromm, Jörg‐Dieter Schulzke. 'Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. 2012 The Journal of Physiology 590, no. 5, 1035-1044. Hino, Shingo, Naomichi Nishimura, Tsukasa Matsuda, Tatsuya Morita. Intestinal absorption of β-glucans and their effect on the immune system. 2020. Holmgren, Jan, Cecil Czerkinsky. Mucosal immunity and vaccines. 2005 Nature Medicine 11, no. 4, S45-S53. Jung, Camille, Jean-Pierre Hugot, Frédérick Barreau. Peyer's patches: the immune sensors of the intestine. 2010 International Journal of Inflammation. Javmen, A., Nemeikaitė-Čėnienė, A., Grigiškis, S., Lysovienė, J., Jonauskienė, I., Šiaurys, A., Mauricas, M. The effect of Saccharomyces cerevisiae β-glucan on proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells. 2017 Biologia, 72(5), 561-568. Jin, Y., Xia, J., Pan, Z., Yang, J., Wang, W., Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. 2018 Environmental Pollution, 235, 322-329. Kämpfer, Angela AM, Patricia Urbán, Sabrina Gioria, Nilesh Kanase, Vicki Stone, and Agnieszka Kinsner-Ovaskainen. 'Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. 2017 Toxicology in Vitro 45: 31-43. Kagnoff, Martin F. The intestinal epithelium is an integral component of a communications network. 2014 The Journal of Clinical Investigation 124, no. 7, 2841-2843. Korn, Thomas, Estelle Bettelli, Mohamed Oukka, and Vijay K. Kuchroo. IL-17 and Th17 Cells. 2009 Annual review of immunology 27, 485-517. Khalikova, Elvira, Petri Susi, and Timo Korpela. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. 2005 Microbiology and Molecular Biology Reviews 69, no. 2, 306-325. Klis, Frans M., Andre Boorsma, and Piet WJ De Groot. Cell wall construction in Saccharomyces cerevisiae. 2006 Yeast 23, no. 3, 185-202. Khan, Muhammad Asjad, Muhammad Mohsin Javed, Asia Ahmed, Sana Zahoor, and Kaleem Iqbal. Process optimization for the production of Yeast Extract using fresh Baker’s yeast. 2020 Pakistan Journal of Biochemistry and Biotechnology 1, no. 2. Kwiatkowski, T. Jr, D. A. Bosco, A. L. Leclerc, E. Tamrazian, C. R. Vanderburg, C. Russ, A. Davis et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. 2009 Science 323, no. 5918, 1205-1208. Kollár, R., Reinhold, B. B., Petráková, E., Yeh, H. J., Ashwell, G., Drgonová, J., ... Cabib, E. Architecture of the yeast cell wall: β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)-glucan, and chitin. 1997 Journal of Biological Chemistry, 272(28), 17762-17775. Luo, Cong, Shuyi Cen, Guojun Ding, and Wei Wu. Mucinous colorectal adenocarcinoma: clinical pathology and treatment options. 2019 Cancer Communications 39, no. 1, 1-13. Liu, Hong-Zhi, Qiang Wang, Xiao-Yong Liu, and Sze-Sze Tan. 'Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall. 2008 Applied Microbiology and Biotechnology 81, no. 3, 543-550. Liang, Qiaoling, Lei Guo, Shaila Gogate, Zunayet Karim, Arezoo Hanifi, Donald Y. Leung, Magdalena M. Gorska, and Rafeul Alam. IL-2 and IL-4 Stimulate MEK1 Expression and Contribute to T Cell Resistance against Suppression by TGF-β and IL-10 in Asthma. 2010 The Journal of Immunology 185, no. 10: 5704-5713. Moreno-García, Alexandra, Alejandra Kun, Olga Calero, Miguel Medina, and Miguel Calero. An overview of the role of lipofuscin in age-related neurodegeneration. 2018 Frontiers in Neuroscience 12, 464. Macpherson, Andrew J., and Karen Smith. Mesenteric lymph nodes at the center of immune anatomy. 2006 The Journal of experimental medicine 203, no. 3: 497. Maynard, Craig L., Charles O. Elson, Robin D. Hatton, and Casey T. Weaver. Reciprocal interactions of the intestinal microbiota and immune system. 2012 Nature 489, no. 7415, 231-241. Majtán, Juraj, Grigorij Kogan, Elena Kováčová, Katarína Bíliková, and Jozef Šimúth. Stimulation of TNF-α release by fungal cell wall polysaccharides. 2005 Zeitschrift für Naturforschung C 60, no. 11-12, 921-926. Moreno-García, Jaime, García-Martínez, T., Mauricio, J. C., Moreno, J. Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Frontiers in microbiology 9 2018 241. Ma, Qiang, Krista Kinneer. 'Chemoprotection by phenolic antioxidants: inhibition of tumor necrosis factor α induction in macrophages. 2002 Journal of Biological Chemistry 277, no. 4, 2477-2484. Mollapour, Mehdi, Peter W. Piper. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. 2007 Molecular and Cellular Biology 27, no. 18, 6446-6456. Montes de Oca, R., A. Z. M. Salem, A. E. Kholif, H. Monroy, L. S. Pérez, J. L. Zamora, A. Gutiérez, and A. K. Puniya. Yeast: description and structure. 2016 Yeast Additives and Animal Production, 4-13. MacKay, R. J., Russell, S. W. Protein changes associated with stages of activation of mouse macrophages for tumor cell killing. 1986 The Journal of Immunology, 137(4), 1392-1398. Marson, G. V., Saturno, R. P., Comunian, T. A., Consoli, L., da Costa Machado, M. T., Hubinger, M. D. Maillard conjugates from spent brewer’s yeast by-product as an innovative encapsulating material. 2020 Food Research International, 136, 109365. Natoli, Manuela, Bruno D. Leoni, Igea D’Agnano, Flavia Zucco, Armando Felsani. Good Caco-2 cell culture practices. 2012 Toxicology in vitro 26, no. 8, 1243-1246. Natoli, M., Leoni, B. D., D’Agnano, I., Zucco, F., Felsani, A. 2012. Good Caco-2 cell culturepractices. Toxicology in vitro, 26(8), 1243-1246. Neutra, Marian R., Andreas Frey, Jean-Pierre Kraehenbuhl. Epithelial M cells: gateways for mucosal infection and immunization. 1996 Cell 86, no. 3, 345-348. Novak, M., and V. Vetvicka. β-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. 2008 Journal of Immunotoxicology 5, no.1, 47-57. Okada, Hiroki, Yoshikazu Ohya. Fluorescent labeling of yeast cell wall components. 2016 Cold Spring Harbor Protocols, no. 8, pdb-prot085241. Orlean, Peter. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.2012 Genetics 192, no. 3, 775-818. Perez-Lopez, Araceli, Judith Behnsen, Sean-Paul Nuccio, Manuela Raffatellu. Mucosal immunity to pathogenic intestinal bacteria. 2016 Nature Reviews Immunology 16, no. 3, 135-148. Pereira, C., Chaves, S., Alves, S., Salin, B., Camougrand, N., Manon, S., Côrte‐Real, M. Mitochondrial degradation in acetic acid‐induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. 2010 Molecular microbiology, 76(6), 1398-1410. Perez-Garcia, L. A., D. F. Diaz-Jimenez, A. Lopez-Esparza, and H. M. Mora-Montes. Role of cell wall polysaccharides during recognition of Candida albicans by the innate immune system. 2011 J Glycobiology 1, no. 102, 2. Ramakrishna, B. S. Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease. 2009 Tropical Gastroenterology, 30(2), 76-85. Srinivasan, Balaji, Aditya Reddy Kolli, Mandy Brigitte Esch, Hasan Erbil Abaci, Michael L. Shuler, James J. Hickman. TEER measurement techniques for in vitro barrier model systems. 2015 Journal of Laboratory Automation 20, no. 2, 107-126. Seo, Yu-Ri, Dinesh K. Patel, Woo-Chul Shin, Wan-Sup Sim, Ok-Hwan Lee, and Ki-Taek Lim. Structural elucidation and immune -enhancing effects of novel polysaccharide from Grifola frondosa. 2019 BioMed Research International 2019. Sambruy, Y., Ferruzza, S., Ranaldi, G., De Angelis, I. Intestinal cell culture models: applications in toxicology and pharmacology. 2011 Cell Biology and Toxicology, 17(4), 301-317. Stier, Heike, Veronika Ebbeskotte, Joerg Gruenwald. Immune-modulatory effects of dietary Yeast Beta-1, 3/1, 6-D-glucan. 2014 Nutrition Journal 13, no. 1, 1-9. Su, Liping, Le Shen, Daniel R. Clayburgh, Sam C. Nalle, Erika A. Sullivan, Jon B. Meddings, Clara Abraham, Jerrold R. Turner. 2009 Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis.' Gastroenterology 136, no. 2, 551-563. Shin, Jin-Hong, Yongping Yue, Arun Srivastava, Bruce Smith, Yi Lai, Dongsheng Duan. A simplified immune suppression scheme leads to persistent micro-dystrophin expression in Duchenne muscular dystrophy dogs. 2012 Human Gene Therapy 23, no. 2, 202-209. Schiavone, Marion, Amélie Vax, Cécile Formosa, Hélène Martin-Yken, Etienne Dague, Jean M. François. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. 2014 FEMS yeast Research 14, no. 6, 933-947. Sarlin, Pathissery J., and Rosamma Philip. A molasses based fermentation medium for marine yeast biomass production. 2013 Int J Res Mar Sci 2, 39-44. Tipper, Donald J., Eva Szomolanyi-Tsuda. Scaffolded antigens in yeast cell particle vaccines provide protection against systemic polyoma virus infection. 2016 Journal of Immunology Research 2016. Tokuhara, Daisuke, Yosuke Kurashima, Mariko Kamioka, Toshinori Nakayama, Peter Ernst, Hiroshi Kiyono. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. 2019 Allergology International 68, no.1, 17-25. Tudela, R., Gallardo-Chacón, J. J., Rius, N., López-Tamames, E., Buxaderas, S. Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions. 2012 FEMS Yeast Research, 12(4), 466-476. Thumm, Michael. Structure and function of the yeast vacuole and its role in autophagy. 2000 Microscopy Research and Technique 51, no. 6 , 563-572. Tanaka, T., Narazaki, M., Kishimoto, T. IL-6 in inflammation, immunity, and disease.2014 Cold Spring Harbor Perspectives in Biology, 6(10), a016295. Takeshige, K., Ouchi, K. Factors affecting the ethanol productivity of yeast in molasses. 1995 Journal of fermentation and Bioengineering, 79(5), 449-452. Takalloo, Z., Nikkhah, M., Nemati, R., Jalilian, N., Sajedi, R. H. Autolysis, plasmolysis and enzymatic hydrolysis of baker's yeast (Saccharomyces cerevisiae): a comparative study. 2020 World Journal of Microbiology and Biotechnology, 36(5), 1-14. Ugalde, U. O., Castrillo, J. I. Single cell proteins from fungi and yeasts. 2002 In Applied mycology and biotechnology (Vol. 2, pp. 123-149). Elsevier. Venkatachalam, Geetha, Senthilkumar Arumugam, and Mukesh Doble. Synthesis, characterization, and biological activity of aminated zymosan. 2020 ACS Omega 5, no. 26, 15973-15982. Vu, Van Hanh, and Keun Kim. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor. 2009 Journal of Microbiology and Biotechnology 19, no. 12, 1603-1611. Verduyn, C., Suksomcheep, A., Suphantharika, M. Effect of high pressure homogenization and papain on the preparation of autolysed yeast extract. 1999 World Journal of Microbiology and Biotechnology, 15(1), 57-63. Vidal, Vitor AS, Jaqueline B. Santana, Camila S. Paglarini, Maria AAP da Silva, Mônica Q. Freitas, Erick A. Esmerino, Adriano G. Cruz, and Marise AR Pollonio. Adding lysine and yeast extract improves sensory properties of low sodium salted meat. 2020 Meat Science 159, 107911. Vukašinović-Milić, T., Rakin, M., Šiler-Marinković, S. Utilization of baker's yeast (Saccharomyces cerevisiae) for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery. 2007 Journal of the Serbian Chemical Society, 72(5), 451-457. Weaver, Casey T., Emil R. Unanue. The costimulatory function of antigen-presenting cells. 1990 Immunology today 11: 49-55. Walker, Graeme M., and White, Nia A. Introduction to fungal physiology. 2017 Fungi: Biology and Applications, 1-35. Wottrich, R., Diabaté, S., Krug, H. F. Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono-and co-culture. 2004 International Journal of Hygiene and Environmental Health, 207(4), 353-361. Wang, J., Li, M., Zheng, F., Niu, C., Liu, C., Li, Q., Sun, J. Cell wall polysaccharides:before and after autolysis of brewer’s yeast. 2018 World Journal of Microbiology and Biotechnology, 34(9), 1-8. Wang, S., Zhu, S., Zhang, J., Li, H., Yang, D., Huang, S., ... Wang, Z. Supplementation with yeast culture improves the integrity of intestinal tight junction proteins via NOD1/NF‐κB P65 pathway in weaned piglets and H2O2- challenged IPEC-J2 cells. 2020 Journal of Functional Foods, 72, 104058. Xie, Jin, Chun Cui, Jiaoyan Ren, Mouming Zhao, Long Zhao, and Wei Wang. High solid concentrations facilitate enzymatic hydrolysis of yeast cells. 2017 Food and Bioproducts Processing 103, 114-121. Yuan, Y., Wang, S., Liu, Y., Li, B., Wang, B., Peng, Y. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. 2015 Bioresource Technology, 197, 56-63. Zgair, Atheer, Jonathan CM Wong, Jong Bong Lee, Jatin Mistry, Olena Sivak, Kishor M. Wasan, Ivo M. Hennig et al. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. 2016 8, no. 8, 3448. Żymańczyk-Duda, E., Brzezińska-Rodak, M., Klimek-Ochab, M., Duda, M., Zerka, A. Yeast as a versatile tool in biotechnology. 2017 Yeast Ind. Appl., 1, 3-40. Zhu, Fengmei, Bin Du, Zhaoxiang Bian, and Baojun Xu. 'Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. 2015 Journal of Food Composition and Analysis 41, 165-173. Zechner-Krpan, V., Petravić-Tominac, V., Galović, P., Galović, V., Filipović-Grčić, J., Srečec, S. Application of different drying methods on β-glucan isolated from spent brewer’s yeast using alkaline procedure. 2010 Agriculturae Conspectus Scientificus, 75(1), 45-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80471 | - |
| dc.description.abstract | "2020 年全球酵母市場價值估計為 39 億美元,預計到 2025 年將達到 61 億美元。其中,細胞壁是生產酵母提取物的副產品,含有 55-60% β-1,3-1,6-葡聚醣和30-40%甘露醣蛋白,已被證實具有刺激先天性免疫系統的潛在能力,又稱為生物活性調節劑(biological response modifier),能直接與先天性免疫細胞進行交互作用, 並活化促進下游相關免疫反應。通過適當控制裂解條件之破壁製程,不僅可以獲得分離後的酵母提取物和細胞壁碎片,還可以修飾細胞壁以增強其免疫刺激功能。本研究的目的是建立一種破壁加工製程,以生產可有效刺激免疫反應的酵母細胞壁產物。本研究使用自體水解(胞內酵素)和酵素水解(商業外添酵素)來實現細胞壁裂解製程。第一部分探討自體水解製程(Autolysis),使用醋酸鹽調節 pH 至 4.5, 釋放的氨基酸量高於用鹽酸調節 pH 值的傳統自解製程,胞內酵素水解能力能使細胞壁造成孔洞及塌陷。為了增進破壁效果,並修飾細胞壁結構,再利用添加內切 β-葡聚醣酶 Viscozyme 並結合自體水解進行破壁製程(Combined Autolysis-Hydrolyis process, CAH)。結果發現,在自解製程進行後 6 小時及 12 小時再介入酵素(CAH 6h 及 CAH 12h)相較於一開始添加(CAH 0h)可以使胞內核苷酸釋出量增加,並且 使平均細胞壁碎片粒徑減少。這可能是由於自解會先使細胞壁機械強度減弱,使外添要素更易進行水解。然而,使酵素更容易作用反而可能造成更多細胞壁 β-葡聚醣的損失,使其 β-葡聚醣含量在四組別中最低。此結果也反應在模擬腸道免疫試驗中,CAH 12h 組的 IL-6 釋放量最低;而含有最多 β-葡聚醣含量的 CAH 0h 組則顯著高於其他組別,顯示 β-葡聚醣含量為一個免疫刺激重要的評估指標,也顯示酵母細胞壁多醣的各種物化性質對於刺激免疫效果會有不同的影響,包括溶解度、粒子大小、β-glucan 含量等。然而,所有樣品均對刺激 Raw264.7 分泌細胞因子有顯著影響,且釋放量都顯著低於 LPS 組,因此本研究之細胞壁破壁產品都具有作 為安全且溫和之腸道黏膜免疫刺激膳食補充劑之潛力。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:07:20Z (GMT). No. of bitstreams: 1 U0001-2810202109310800.pdf: 4196390 bytes, checksum: bb5440d48b7d35a161831312d8ee3d88 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 第一章、文獻回顧 1 第一節、酵母菌介紹 1 第二節、酵母菌細胞壁簡介 2 (一)β-葡葡聚醣(β-glucan) 3 (二)甘露糖蛋白(mannoprotein) 4 (三)幾丁質(chitins) 4 第三節、酵母菌加工產品應用現況 4 第四節、酵母菌的生產及加工流程 7 (一)酵母菌的生產 7 (二)破壁製程 8 (三)離心 10 (四)濃縮及乾燥 10 第五節、酵素法破壁製程 11 (一)自體水解法(Autolysis) 11 (二)外添酵素水解法(enzyme hydrolysis) 13 第六節、腸道黏膜防禦系統簡介 14 第七節、酵母細胞壁對腸道黏膜完整性與免疫功能調節的影響 18 (一)酵母細胞壁多醣維持腸道完整性之機制 18 (二)酵母細胞壁多醣對於調節免疫反應的機制 19 第八節、CaCO2 與 Raw264.7 細胞共培養之體外評估模型 22 (一)共培養模型之介紹及其適切性 23 (二)腸道完整性與免疫刺激評估指標 24 第二章、研究目的與實驗架構 26 第一節、研究目的 26 第二節、實驗架構 27 第三章、材料與方法 28 第一節、實驗材料 28 (一)微生物菌株 28 (二)微生物培養基原料 28 (三)細胞菌株 28 第二節、儀器設備 30 第三節、實驗方法 31 (一)酵母菌的生產 31 (二)破壁製程-生產酵母菌破壁產品 31 (三) 破壁指標測定 32 (四)細胞培養 36 (五)細胞存活率試驗 (MTT assay) 37 (六)以 Raw264.7 進行樣品免疫刺激活性測定 38 (七) 模擬腸道之共培養模型建立 41 第四章、結果與討論 43 第一節、 自體水解製程之破壁效果 43 (一)一般自體水解製程之確立 43 (二)優化自體水解製程之破壁效果 45 (三)自體水解製程對於酵母菌體型態上之變化 48 (四)優化破壁製程依時間之胺基酸釋出量 50 第二節、外源酵素水解之破壁效果 51 (一)比較胺基酸釋出量與核苷酸釋出量 51 第三節、結合自體水解與酵素水解製程之破壁效果 54 (一)不同破壁製程之核苷酸釋出量 54 (二)不同破壁製程之上清液及沉澱物產量 54 (三)於不同時間點加入酵素對核苷酸釋出量之影響 57 第四節、酵母菌破壁產品對 RAW264.7 細胞之免疫刺激作用 63 (一)酵母菌破壁產品對 RAW264.7 細胞之存活率影響 63 (二)酵母菌破壁產品刺激 RAW264.7 細胞免疫反應之影響 66 (三)各製程生產之酵母菌水解沉澱物對 RAW264.7 細胞之存活率影響 68 (四) 各製程生產之酵母菌水解沉澱物對 RAW264.7 細胞釋出 TNF-α 及 IL-6 之影響 70 第五節、細胞壁破壁產品對模擬腸道黏膜共培養模型之作用 74 (一)酵母菌破壁產品對於 Caco-2 細胞之存活率影響 74 (二)各製程生產之酵母菌水解沉澱物對於維持腸道完整性之影響 76 (三)各製程生產之酵母菌水解沉澱物於共培養模型中對 RAW264.7 細胞釋出細胞激 素 TNF-α 及 IL-6 之影響 81 第五章、結論 86 第六章、參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酵母細胞壁 | zh_TW |
| dc.subject | β-葡聚醣 | zh_TW |
| dc.subject | 腸道免疫 | zh_TW |
| dc.subject | 自體水解 | zh_TW |
| dc.subject | 酵素水解 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | Raw 264.7 | zh_TW |
| dc.subject | cytokines | en |
| dc.subject | yeast cell wall | en |
| dc.subject | yeast β-glucan | en |
| dc.subject | mucosa immunity | en |
| dc.subject | autolysis | en |
| dc.subject | enzyme hydrolysis | en |
| dc.subject | Raw 264.7 | en |
| dc.title | 改善破壁製程以提升酵母菌細胞壁水解產物之腸黏膜免疫功效 | zh_TW |
| dc.title | Enhancement of gut mucosal immune function of hydrolyzed yeast cell wall by improving enzymatic process | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳時欣(Shih-Hsin Chen) | |
| dc.contributor.oralexamcommittee | 周繼中(Hsin-Tsai Liu),陳勁初(Chih-Yang Tseng),李俊德 | |
| dc.subject.keyword | 酵母細胞壁,β-葡聚醣,腸道免疫,自體水解,酵素水解,Raw 264.7,細胞激素, | zh_TW |
| dc.subject.keyword | yeast cell wall,yeast β-glucan,mucosa immunity,autolysis,enzyme hydrolysis,Raw 264.7,cytokines, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202104396 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-11-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2810202109310800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
