Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔(Chung-Ming Kuan)
dc.contributor.authorWen-Yu Linen
dc.contributor.author林汶郁zh_TW
dc.date.accessioned2022-11-24T03:04:06Z-
dc.date.available2021-07-08
dc.date.available2022-11-24T03:04:06Z-
dc.date.copyright2021-07-08
dc.date.issued2021
dc.date.submitted2021-06-26
dc.identifier.citation一、外文文獻 Barras, L., O. Scaillet, R. Wermers (2010). False discoveries in mutual fund performance: Measuring luck in estimated alphas. Journal of Finance, 65(1), 179-216. Benjamini, Y., Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1), 57-82. Cuthbertson, K., D. Nitzsche (2013). Performance, stock selection and market timing of the German equity mutual fund industry. Journal of Empirical Finance, 21, 86-101. Cuthbertson, K., D. Nitzsche, N. O'Sullivan (2012). False discoveries in UK mutual fund performance. European Financial Management, 18(3), 444-463. Dudoit, S., J. Fridlyand, T. P. Speed (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457), 77-87. Fama E. K. French (1992). The cross-section of expected stock returns. Journal of Finance, 47(2), 427-465. Genovese, C. R., N. A. Lazar, T. Nichols (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870- 878. Glickman, M. E., S. R. Rao, M. R. Schultz (2014). False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. Journal of Clinical Epidemiology, 67(8), 850-85j7. Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business Economic Statistics, 23(4), 365-380. Hawinkel, S., F. Mattiello, L. Bijnens, O. Thas (2019). A broken promise: microbiome differential abundance methods do not control the false discovery rate. Briefings in Bioinformatics, 20(1), 210-221. Hommel, G., T. Hoffmann (1988). Controlled uncertainty. In Multiple Hypothesenprüfung/Multiple Hypotheses Testing (pp. 154-161). Springer. Hong, J., Y. Luo, Y. Zhang, J. Ying, W. Xue, T. Xie, L. Tao, F. Zhu (2020). Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Briefings in Bioinformatics, 21(4), 1437-1447. Hsu, P. H., Y. C. Hsu, C. M. Kuan (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17(3), 471-484. Hsu, Y. C., C.M. Kuan, M.F. Yen (2014). A generalized stepwise procedure with improved power for multiple inequalities testing. Journal of Financial Econometrics, 12(4), 730-755. Kamil, N. K., S. O. Alhabshi, O. I. Bacha, M. Masih (2014). Heads we win, tails you lose: Is there equity in Islamic equity funds? Pacific-Basin Finance Journal, 28, 7-28. Kim, S., F. In (2012). False discoveries in volatility timing of mutual funds. Journal of Banking Finance, 36(7), 2083-2094. Kosowski, R., A. Timmermann, R. Wermers, H. White (2006). Can mutual fund “stars” really pick stocks? New evidence from a bootstrap analysis. Journal of Finance, 61(6), 2551-2595. Lehmann, E. L., Romano, J. P. (2005). Generalizations of the familywise error rate. The Annals of Statistics, 33(3), 1138-1154. Li, J., D. M. Witten, I. M. Johnstone, R. Tibshirani (2012). Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13(3), 523-538. Nelson, C. P., A. Goel, A. S. Butterworth, S. Kanoni, T. R. Webb, E. Marouli, L. Zeng, I. Ntalla, F. Y. Lai, J. C. Hopewell (2017). Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 49(9), 1385. Romano, J. P., M. Wolf (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73(4), 1237-1282. Romano, J. P., M. Wolf (2007). Control of generalized error rates in multiple testing. The Annals of Statistics, 35(4), 1378-1408. Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 479-498. Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. The Annals of Statistics, 31(6), 2013-2035. Storey, J. D., R. Tibshirani (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445. Tusher, V. G., R. Tibshirani, G. Chu (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. Walzthoeni, T., M. Claassen, A. Leitner, F. Herzog, S. Bohn, F. Förster, M. Beck, R. Aebersold (2012). False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nature Methods, 9(9), 901-903. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, A. W. Ferrante (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 112(12), 1796-1808. White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097-1126. Yu, C. Y., X. X. Li, H. Yang, Y. H. Li, W. W. Xue, Y. Z. Chen, L. Tao, F. Zhu (2018). Assessing the performances of protein function prediction algorithms from the perspectives of identification accuracy and false discovery rate. International Journal of Molecular Sciences, 19(1), 183. 二、中文文獻 莊惠菁、管中閔 (2010)。以無資料窺探偏誤的檢定評估共同基金績效。證券市場 發展季刊,第 22 卷第 3 期,181-206。 莊惠菁、管中閔 (2020)。共同基金卓越績效的認定與評估:新逐步檢定法的應 用。證券市場發展季刊,第 32 卷第 1 期,1-31。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80302-
dc.description.abstract"實務與學術上,檢定共同基金績效是否較大盤更為優異是相當重要的議題。對多檔基金同時進行多重假設檢定,會面臨總體型一錯誤率膨脹的問題,藉由控制錯誤發現率 (False Discovery Rate, FDR) 則可避免此問題。本研究檢定共同基金績效,探究控制錯誤發現率在辨別真實優異基金的表現。研究結果顯示,控制 FDR 選出的優異基金在樣本外區間依然優異的比例,較未控制 FDR 更高,意味該方法有助於篩選出真正優異的基金。其次,以控制 FDR 選出的優異基金形成的資產組合在樣本外區間的績效,優於未控制 FDR 組成的資產組合,顯示該方法能建構績效更優異的基金資產組合。所以採用 Benjamini \ Hocberg (1995) 控制 FDR 的方法,較容易選出實務上具有優異表現的基金。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:04:06Z (GMT). No. of bitstreams: 1
U0001-2606202108490500.pdf: 2453391 bytes, checksum: c16897528319c9cf613473b8db61cc7d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書........................................................................................................... i 誌謝............................................................................................................................... ii 摘要 .............................................................................................................................. iii Abstract ....................................................................................................................... iv 目錄............................................................................................................................... v 表目錄.............................................................................................................................vi 圖目錄.............................................................................................................................vii 1 緒論............................................................................................................................. 1 2 文獻回顧...................................................................................................................... 5 3 實證方法..................................................................................................................... 11 3.1 基金績效指標......................................................................................................... 11 3.2 研究方法............................................................................................................... 13 4 研究結果分析.............................................................................................................. 18 4.1 資料與基本統計量.................................................................................................. 18 4.2 檢定結果............................................................................................................... 19 4.3 優異基金的持續性................................................................................................. 22 5 結論............................................................................................................................ 27 參考文獻........................................................................................................................ 30
dc.language.isozh-TW
dc.subject錯誤拒絕率zh_TW
dc.subject因子異常報酬zh_TW
dc.subject全族錯誤率zh_TW
dc.subject多重假設檢定zh_TW
dc.subject拔靴法zh_TW
dc.subject資產組合zh_TW
dc.subjectFWERen
dc.subjectType I erroren
dc.subjectmultiple hypothesis testen
dc.subjectBonferroni procedureen
dc.subjectbootstrapen
dc.subjectFDRen
dc.title以錯誤發現率控制法評估共同基金績效zh_TW
dc.titleEvaluating Mutual Fund Performance with False Discovery Rate Controlen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許育進(Hsin-Tsai Liu),莊惠菁(Chih-Yang Tseng),何耕宇
dc.subject.keyword因子異常報酬,全族錯誤率,多重假設檢定,拔靴法,資產組合,錯誤拒絕率,zh_TW
dc.subject.keywordBonferroni procedure,bootstrap,FDR,FWER,multiple hypothesis test,Type I error,en
dc.relation.page42
dc.identifier.doi10.6342/NTU202101144
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-06-28
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
U0001-2606202108490500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved