請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80079完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Tulustia Japanesa | en |
| dc.contributor.author | 鄭黛婷 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:24:56Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:24:56Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-20 | |
| dc.identifier.citation | REFERENCES [1] J.W.Yeh, Y.L.Chen, S.J.Lin, S.K.Chen, High-Entropy Alloys – A New Era of Exploitation, Mater. Sci. Forum. 560 (2007) 1–9. [2] J.W.Yeh, S.K.Chen, S.J.Lin, J.Y.Gan, T.S.Chin, T.T.Shun, C.H.Tsau, S.Y.Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. [3] J.W.Yeh, Physical Metallurgy of High-Entropy Alloys, Jom. 67 (2015) 2254–2261. [4] Z.Wu, H.Bei, G.M.Pharr, E.P.George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [5] A.S.Tirunilai, T.Hanemann, C.Reinhart, V.Tschan, K.P.Weiss, G.Laplanche, J.Freudenberger, M.Heilmaier, A.Kauffmann, Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi, Mater. Sci. Eng. A. 783 (2020). [6] B.Cantor, Multicomponent and high entropy alloys, Entropy. 16 (2014) 4749–4768. [7] G.Laplanche, A.Kostka, O.M.Horst, G.Eggeler, E.P.George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152–163. [8] S.Yoshida, T.Ikeuchi, T.Bhattacharjee, Y.Bai, A.Shibata, N.Tsuji, Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high / medium entropy alloys, Acta Mater. 171 (2019) 201–215. [9] F.Otto, A.Dlouhý, C.Somsen, H.Bei, G.Eggeler, E.P.George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743–5755. [10] Z.Wu, H.Bei, F.Otto, G.M.Pharr, E.P.George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics. 46 (2014) 131–140. [11] G.Laplanche, A.Kostka, C.Reinhart, J.Hunfeld, G.Eggeler, E.P.George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [12] B.Gludovatz, A.Hohenwarter, K.V.S.Thurston, H.Bei, Z.Wu, E.P.George, R.O.Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016). [13] Y.Li, Y.H.Zhao, W.Liu, C.Xu, Z.Horita, X.Z.Liao, Y.T.Zhu, T.G.Langdon, E.J.Lavernia, Influence of grain size on the density of deformation twins in Cu-30%Zn alloy, Mater. Sci. Eng. A. 527 (2010) 3942–3948. [14] H.W.Deng, Z.M.Xie, B.L.Zhao, Y.K.Wang, M.M.Wang, J.F.Yang, T.Zhang, Y.Xiong, X.P.Wang, Q.F.Fang, C.S.Liu, Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins, Mater. Sci. Eng. A. 744 (2019) 241–246. [15] H.Shahmir, T.Mousavi, J.He, Z.Lu, M.Kawasaki, T.G.Langdon, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing, Mater. Sci. Eng. A. 705 (2017) 411–419. [16] R.Gholizadeh, A.Shibata, N.Tsuji, Grain refinement mechanisms in BCC ferritic steel and FCC austenitic steel highly deformed under different temperatures and strain rates, Mater. Sci. Eng. A. 790 (2020). [17] S.Nestorovic, D.Markovic, L.Ivanic, Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy, Bull. Mater. Sci. 26 (2003) 601–604. [18] S.Nagarjuna, U.Chinta Babu, P.Ghosal, Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy, Mater. Sci. Eng. A. 491 (2008) 331–337. [19] R.Ihira, H.Gwon, R.Kasada, S.Konishi, Improvement of tensile properties of pure Cu and CuCrZr alloy by cryo-rolling process, Fusion Eng. Des. 109–111 (2016) 485–488. [20] M.Y.Maeda, J.J.H.Quintero, M.T.Izumi, M.F.Hupalo, O.M.Cintho, Study of cryogenic rolling of FCC metals with different stacking fault energies, in: Mater. Res., Universidade Federal de Sao Carlos, 2017: pp. 716–721. [21] H.Yu, C.Lu, K.Tieu, X.Liu, Y.Sun, Q.Yu, C.Kong, Asymmetric cryorolling for fabrication of nanostructural aluminum sheets, Sci. Rep. 2 (2012) 1–5. [22] P.Bhaskar, A.Dasgupta, V.S.Sarma, U.K.Mudali, S.Saroja, Mechanical properties and corrosion behaviour of nanocrystalline Ti-5Ta-1.8Nb alloy produced by cryo-rolling, Mater. Sci. Eng. A. 616 (2014) 71–77. [23] A.S.Anasyida, Z.A.M.K.Mohammed, H.Zuhailawati, Effect of cold and cryo rolling on microstructure and mechanical properties of low carbon steel, Mater. Today Proc. 17 (2019) 846–852. [24] M.Klimova, S.Zherebtsov, N.Stepanov, G.Salishchev, C.Haase, D.A.Molodov, Microstructure and texture evolution of a high manganese TWIP steel during cryo-rolling, Mater. Charact. 132 (2017) 20–30. [25] N.Stepanov, M.Tikhonovsky, N.Yurchenko, D.Zyabkin, M.Klimova, S.Zherebtsov, A.Efimov, G.Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics. 59 (2015) 8–17. [26] T.Bhattacharjee, I.S.Wani, S.Sheikh, I.T.Clark, T.Okawa, S.Guo, P.P.Bhattacharjee, N.Tsuji, Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing, Sci. Rep. 8 (2018). [27] Z.Zhang, Y.Wu, L.Bhatta, C.Li, B.Gan, C.Kong, Y.Wang, H.Yu, Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing, Mater. Today Commun. 26 (2021) 101776. [28] Y.Wu, J.Liu, L.Bhatta, C.Kong, H.Yu, Study of texture analysis on asymmetric cryorolled and annealed cocrni medium entropy alloy, Crystals. 10 (2020) 1–12. [29] B.S.Murty, S.Ranganathan, J.W.Yeh, P.P.Bhattacharjee, High Entropy Alloy, Second, Elsevier Inc., 2019. [30] B.Cantor, I.T.H.Chang, P.Knight, A.J.B.Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218. [31] S.P.Tsai, Y.T.Tsai, Y.W.Chen, P.J.Chen, P.H.Chiu, C.Y.Chen, W.S.Lee, J.W.Yeh, J.R.Yang, High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation, Mater. Charact. 147 (2019) 193–198. [32] W.Zhou, L.M.Fu, P.Liu, X.D.Xu, B.Chen, G.Z.Zhu, X.D.Wang, A.D.Shan, M.W.Chen, Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy, Intermetallics. 85 (2017) 90–97. [33] B.Schuh, F.Mendez-Martin, B.Völker, E.P.George, H.Clemens, R.Pippan, A.Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. [34] N.L.Okamoto, S.Fujimoto, Y.Kambara, M.Kawamura, Z.M.T.Chen, H.Matsunoshita, K.Tanaka, H.Inui, E.P.George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6 (2016) 1–10. [35] C.Niu, C.R.LaRosa, J.Miao, M.J.Mills, M.Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys, Nat. Commun. 9 (2018). [36] J.Miao, C.E.Slone, T.M.Smith, C.Niu, H.Bei, M.Ghazisaeidi, G.M.Pharr, M.J.Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Mater. 132 (2017) 35–48. [37] A.Kelly, K.M.Knowles, Crytallography and Crystal Defect, Second Edi, John Wiley Sons, Ltd, West Sussex, United Kingdom, 2012. [38] D.G.Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall. 14 (1966) 1479–1484. [39] S.D.Mahajan, C.S.Pande, M.A.Imam, B.B.Rath, Formation of annealing twins in f.c.c. crystals, Acta Mater. 45 (1997) 2633–2638. [40] H.Gleiter, THE FORMATION OF ANNEALING TWIN, Acta Metall. 17 (1969) 1421–1428. [41] S.Dash, N.Brown, An investigation of the origin and growth of annealing twins, Acta Metall. 11 (1963) 1067–1075. [42] C.S.Pande, B.B.Rath, M.A.Imam, Effect of annealing twins on Hall-Petch relation inpolycrystalline materials, Mater. Sci. Eng. A. 367 (2004) 171–175. [43] B.B.Rath, M.A.Imam, C.S.Pande, Nucleation and Growth of Twin Interfaces in FCC Metals and Alloys, Mater. Phys. Mech. 1 (2000) 61–66. [44] R.Abbaschian, L.Abbaschian, R.E.Reed-Hill, Physical Metallurgy Principles, Fourth, Cengage Learning, Stamdord, USA, 2009. [45] A.H.Cottrell, B.A.Bilby, LX. A mechanism for the growth of deformation twins in crystals, London, Edinburgh, Dublin Philos. Mag. J. Sci. 42 (1951) 573–581. [46] J.A.Venables, Deformation twinning in face-centred cubic metals, Philos. Mag. 6 (1961) 379–396. [47] J.B.Cohen, J.Weertman, A dislocation model for twinning in f.c.c. metals, Acta Metall. 11 (1963) 996–998. [48] C.J.W., S.Mahajan, DEFORMATION TWINNING, Prog. Mater. Sci. 39 (1995) 1–157. [49] S.J.Sun, Y.Z.Tian, H.R.Lin, H.J.Yang, X.G.Dong, Y.H.Wang, Z.F.Zhang, Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng. A. 712 (2018) 603–607. [50] K.M.Rahman, V.A.Vorontsov, D.Dye, The effect of grain size on the twin initiation stress in a TWIP steel, Acta Mater. 89 (2015) 247–257. [51] Y.Li, L.Dai, Y.Cao, Y.Zhao, Y.Zhu, Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy, J. Mater. Res. 34 (2019) 2398–2405. [52] F.Hamdi, S.Asgari, Evaluation of the role of deformation twinning in work hardening behavior of face-centered-cubic polycrystals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39 (2008) 294–303. [53] S.Chen, The evolution of annealing twin in CoCrNi medium entropy alloy with heterogeneous microstructure and its mechanical property, National Taiwan University, 2020. [54] B.Schuh, B.Völker, J.Todt, K.S.Kormout, N.Schell, A.Hohenwarter, Influence of annealing on microstructure and mechanical properties of a nanocrystalline CrCoNi medium-entropy alloy, Materials (Basel). 11 (2018). [55] P.Sathiyamoorthi, J.W.Bae, P.Asghari-Rad, J.M.Park, J.G.Kim, H.S.Kim, Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion, Entropy. 20 (2018). [56] J.Moon, O.Bouaziz, H.S.Kim, Y.Estrin, Twinning Engineering of a CoCrFeMnNi High-Entropy Alloy, Scr. Mater. 197 (2021) 113808. [57] S.Praveen, J.W.Bae, P.Asghari-Rad, J.M.Park, H.S.Kim, Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy, Mater. Sci. Eng. A. 734 (2018) 338–340. [58] J.Gu, M.Song, Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy, Scr. Mater. 162 (2019) 345–349. [59] N.Zhang, S.B.Jin, G.Sha, J.K.Yu, X.C.Cai, C.C.Du, T.D.Shen, Segregation induced hardening in annealed nanocrystalline Ni-Fe alloy, Mater. Sci. Eng. A. 735 (2018) 354–360. [60] Y.T.Tsai, Y.W.Chen, J.R.Yang, Severe deformation of nanostructured bainitic steel, Procedia Eng. 207 (2017) 1862–1867. [61] J.Su, D.Raabe, Z.Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40–54. [62] C.S.Pande, M.A.Imam, B.B.Rath, Study of annealing twins in FCC metals and alloys, Metall. Trans. A, Phys. Metall. Mater. Sci. 21 A (1990) 2891–2896. [63] C.Haase, L.A.Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys, Acta Mater. 150 (2018) 88–103. [64] S.H.Kim, H.Kim, N.J.Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature. 518 (2015) 77–79. [65] R.Zhang, S.Zhao, J.Ding, Y.Chong, T.Jia, C.Ophus, M.Asta, R.O.Ritchie, A.M.Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature. 581 (2020) 283–287. [66] D.B.Williams, C.B.Carter, Transmission Electron Microscopy : A Textbook for Materials Science, Springer Science Business Media, New York, NY, USa, 2009. [67] S.W.Wu, G.Wang, J.Yi, Y.D.Jia, I.Hussain, Q.J.Zhai, P.K.Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett. 5 (2017) 276–283. [68] S.Zhao, Q.Zhu, X.An, H.Wei, K.Song, S.X.Mao, J.Wang, In situ atomistic observation of the deformation mechanism of Au nanowires with twin–twin intersection, J. Mater. Sci. Technol. 53 (2020) 118–125. [69] F.Wu, H.M.Wen, E.J.Lavernia, J.Narayan, Y.T.Zhu, Twin intersection mechanisms in nanocrystalline fcc metals, Mater. Sci. Eng. A. 585 (2013) 292–296. [70] W.Wu, S.Ni, Y.Liu, B.Liu, M.Song, Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion, Mater. Charact. 127 (2017) 111–115. [71] I.Gutierrez-Urrutia, S.Zaefferer, D.Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0.6wt.% C TWIP steel, Mater. Sci. Eng. A. 527 (2010) 3552–3560. [72] I.Gutierrez-Urrutia, D.Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scr. Mater. 66 (2012) 992–996. [73] R.M.Treco, Recrystallization and grain growth in Iodide Zirconium, J. Met. (1956) 1304–1311. [74] Y.C.Lin, M.S.Chen, J.Zhong, Study of static recrystallization kinetics in a low alloy steel, Comput. Mater. Sci. 44 (2008) 316–321. [75] S.Yan, T.Li, T.Liang, J.Chen, Y.Zhao, X.Liu, By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously, Mater. Sci. Eng. A. 758 (2019) 79–85. [76] J.Humphreys, G.S.Rohrer, Recrystallization and Related Annealing Phenomena, n.d. [77] T.Konkova, S.Mironov, A.Korznikov, G.Korznikova, M.M.Myshlyaev, S.L.Semiatin, Effect of cryogenic temperature and change of strain path on grain refinement during rolling of Cu-30Zn brass, Mater. Des. 86 (2015) 913–921. [78] D.H.Shin, I.Kim, J.Kim, K.T.Park, Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel, Acta Mater. 49 (2001) 1285–1292. [79] Y.Huang, M.Lemang, N.X.Zhang, P.H.R.Pereira, T.G.Langdon, Achieving superior grain refinement and mechanical properties in vanadium through high-pressure torsion and subsequent short-term annealing, Mater. Sci. Eng. A. 655 (2016) 60–69. [80] B.Gludovatz, A.Hohenwarter, D.Catoor, E.H.Chang, E.P.George, R.O.Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science (80-. ). 345 (2014) 1153–1158. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80079 | - |
| dc.description.abstract | 本文使用低溫輥軋與後續退火研究其對於CoCrNi 中熵合金微結構與機械性質的影響。觀察微結構可發現低溫輥軋導入高差排密度、剪切帶以及大量變形雙晶,這些低溫變形組織使材料之最大抗拉強度約1500 MPa、破裂應變約2%。後續700°C退火使冷輥試片產生部分再結晶結構、800°C 退火產生完全再結晶結構,增加退火溫度或退火時間皆使材料之強度下降,但同時可提升伸長量。600°C退火熱處理中可觀察到退火誘導異常硬化(annealing-induced abnormal hardening)現象,材料之強度與硬度與退火前相比提升約25%,與更高退火溫度相比,在相同退火時間下,更可提升約50%。和室溫冷輥軋相比,低溫輥軋可導入更多應變能,有效提升再結晶速率,且無論是部分再結晶或是完全再結晶組織,皆可證實低溫輥軋具有更佳的晶粒細化效果。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:24:56Z (GMT). No. of bitstreams: 1 U0001-1207202111233800.pdf: 10887443 bytes, checksum: d3e57821fcc4c5c821299ef35884c1c3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "CONTENT 口試委員會審定書 i ACKNOWLEDGMENT ii ABSTRACT iv 摘要 v CONTENT vi LIST OF FIGURES viii LIST OF TABLES xv LIST OF EQUATIONS xvi CHAPTER I INTRODUCTION 1 CHAPTER II LITERATURE REVIEW 3 2.1 High Entropy Alloy (HEA) 3 2.2 CoCrNi Medium Entropy Alloy (MEA) 9 2.3 Twinning 14 2.3.1 Annealing twin 15 2.3.2 Deformation twin 17 CHAPTER III RESEARCH METHODOLOGY 20 3.1 Experimental procedure 20 3.1.1 Experimental procedure flow chart 20 3.1.2 Sample composition 20 3.1.3 Cryo rolling and post-annealing treatment 22 3.2 Testing and analysis 23 3.2.1 Hardness test 23 3.2.2 Tensile testing 24 3.2.3 X-ray Diffraction (XRD) 24 3.2.4 Scanning Electron Microscopy – Electron Backscattered Electron (SEM-EBSD) 25 3.2.5 Transmission Electron Microscopy (TEM) 25 CHAPTER IV RESULT AND DISCUSSION 27 4.1 Mechanical properties after cryo rolling and annealing 27 4.2 Microstructure evolution of CoCrNi after cryo rolling and subsequent annealing 33 4.2.1 Microstructure of CoCrNi after cryo rolling 33 4.2.2 Microstructure evolution of cryo rolled CoCrNi after annealing 37 4.2.3 Microstructure evolution of abnormal-induced hardening by annealing on cryo rolled CoCrNi 47 4.2.4 Interrupted tensile test for 700-60, 700-480, and 800-60 53 4.3 Comparison between cryo rolling and room-temperature rolling on CoCrNi to the mechanical properties and microstructure 68 4.3.1 Comparison of microstructure evolution between cryo rolling and cold rolling 69 4.3.2 Comparison of the mechanical properties of cryo rolled and cold rolled CoCrNi 72 CHAPTER V CONCLUSION 75 CHAPTER VI FUTURE WORK 77 REFERENCES 79 " | |
| dc.language.iso | en | |
| dc.subject | 中熵合金 | zh_TW |
| dc.subject | 低溫輥軋 | zh_TW |
| dc.subject | 退火 | zh_TW |
| dc.subject | 變形雙晶 | zh_TW |
| dc.subject | 部分再結晶 | zh_TW |
| dc.subject | CoCrNi | zh_TW |
| dc.subject | 完全再結晶 | zh_TW |
| dc.subject | fully recrystallization | en |
| dc.subject | CoCrNi | en |
| dc.subject | medium entropy alloy | en |
| dc.subject | cryo rolling | en |
| dc.subject | annealing | en |
| dc.subject | deformation twin | en |
| dc.subject | partially recrystallization | en |
| dc.title | 低溫輥軋與後續退火對CoCrNi中熵合金微觀結構與機械性質的影響 | zh_TW |
| dc.title | The effect of cryo rolling and annealing on microstructure and mechanical properties of CoCrNi medium entropy alloy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王樂民(Hsin-Tsai Liu),陳志遠(Chih-Yang Tseng) | |
| dc.subject.keyword | CoCrNi,中熵合金,低溫輥軋,退火,變形雙晶,部分再結晶,完全再結晶, | zh_TW |
| dc.subject.keyword | CoCrNi,medium entropy alloy,cryo rolling,annealing,deformation twin,partially recrystallization,fully recrystallization, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202101398 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1207202111233800.pdf | 10.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
