Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰
dc.contributor.authorYU-MENG FANen
dc.contributor.author范郁盟zh_TW
dc.date.accessioned2021-05-11T05:05:45Z-
dc.date.available2020-05-10
dc.date.available2021-05-11T05:05:45Z-
dc.date.copyright2019-05-10
dc.date.issued2019
dc.date.submitted2019-04-23
dc.identifier.citationAddo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences 267:739-745.
Alan Pounds, J., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. La Marca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sánchez-Azofeifa, C. J. Still, and B. E. Young. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161.
Angilletta Jr, M. J., and M. J. Angilletta. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
Bala, M., and N. Singh. 2017. Geographical distribution of some forensically important species of beetles (Coleoptera: silphidae) from North India (INDIA).
Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington. 2005. Penetration of Human-Induced Warming into the World's Oceans. Science 309:284-287.
Berven, K. A., D. E. Gill, and S. J. Smith‐Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33:609-623.
Castaneda, L. 2004. Adaptive latitudinal shift in the thermal physiology of a terrestrial isopod.
Crick, H. Q. P., C. Dudley, D. E. Glue, and D. L. Thomson. 1997. UK birds are laying eggs earlier. Nature 388:526.
Drent, J. 2002. Temperature responses in larvae of Macoma balthica from a northerly and southerly population of the European distribution range. Journal of Experimental Marine Biology and Ecology 275:117-129.
Fields, P. A. 2001. Review: Protein function at thermal extremes: balancing stability and flexibility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129:417-431.
Fitter, A. H., and R. S. R. Fitter. 2002. Rapid Changes in Flowering Time in British Plants. Science 296:1689-1691.
Forseth, T., S. Larsson, A. J. Jensen, B. Jonsson, I. Näslund, and I. Berglund. 2009. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. Journal of Fish Biology 74:133-149.
Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4:131-135.
Karlsson, B., and H. Van Dyck. 2005. Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society of London B: Biological Sciences 272:1257-1263.
Kingsolver, J. G., G. J. Ragland, and J. G. Shlichta. 2004. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates. Evolution 58:1521-1529.
Merilä, J., A. Laurila, A. T. Laugen, K. Räsänen, and M. Pahkala. 2000. Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography 23:457-465.
Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37.
Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57.
Santer, B. D., M. F. Wehner, T. Wigley, R. Sausen, G. Meehl, K. Taylor, C. Ammann, J. Arblaster, W. Washington, and J. Boyle. 2003. Contributions of anthropogenic and natural forcing to recent tropopause height changes. science 301:479-483.
Scott, M. P., and D. S. J. E. E. Gladstein. 1993. Calculating males? An empirical and theoretical examination of the duration of paternal care in burying beetles. 7:362-378.
Sheldon, K. S., and J. J. Tewksbury. 2014. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95:2134-2143.
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist 133:240-256.
Ståhlberg, F., M. Olsson, and T. Uller. 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. Journal of Evolutionary Biology 14:755-762.
Stott, P. A. 2003. Attribution of regional‐scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters 30.
Sun, H. J., and E. I. Friedmann. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II. Experimental verification. Microbial ecology 49:528-535.
Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences 278:1823-1830.
Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145.
Wilson, R. S. 2001. Geographic variation in thermal sensitivity of jumping performance in the frog <em>Limnodynastes peronii</em>. Journal of Experimental Biology 204:4227-4236.
黃文伯. 2007. 環境變遷監測-氣溫對狹溫性甲蟲活動之影響. 林業研究專訊 14:7-10.
黃文伯, and 葛. J. 環境與生態學報. 2011. 哈盆自然保留區屍食性甲蟲物種生物多樣性監測與氣候變遷之關係. 4:17-34.
蔡祥瑜. 2017. 尼泊爾埋葬蟲繁殖策略的地區適應演化. 臺灣大學生態學與演化生物學研究所學位論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/799-
dc.description.abstract全球暖化對生物造成全面性的衝擊,生物如何適應不同的氣候差異,產生不同的溫度適應模式,是預測暖化如何影響生物續存的重要問題。過去探討生物如何適應不同的氣候主要有兩個假說:適應溫差的氣候變異度假說以及適應平均溫度的最佳溫度假說。生存及繁殖決定了生物的續存,但意義卻不相同,其適應模式也不可一概而論,而過去研究大多著重於生存方面的溫度適應,對於繁殖的溫度適應探討甚少,但繁殖才是生物終其一生的目標。我們以廣泛分布於亞洲的尼泊爾埋葬蟲為實驗物種,比較各溫度下不同族群繁殖表現的差異,以日本奄美族群及台灣合歡山族群進行比較,我們發現生存指標-溫度耐受度符合氣候變異度假說的預測,奄美族群耐受範圍大於合歡山族群。而繁殖方面兩族群對溫度的適應則是比較複雜,在繁殖成功率上兩族群並無顯著的不同,子代的品質也沒有顯著差異,但在埋葬行為方面合歡山族群成功埋葬屍體的比顯著高於奄美族群;而奄美族群雖然埋葬屍體的比例較低,但埋葬屍體後的繁殖成功率則顯著較高。且奄美族群成功埋葬屍體後產出的子代品質都高於合歡山族群,顯示兩族群有不同的繁殖策略。本研究結果顯示,溫度耐受度的適應比較簡單,溫度變異大的環境耐受度也要增加,符合氣候變異度假說的預測,而繁殖不同階段的適應明顯不同,表示繁殖是相對複雜的行為,從埋葬屍體到子代孵化,其中包含了不只一個行為表現,並且各自的適應模式並不相同,這說明了要充分了解氣候對生物適應的影響,除了生存以外也必須仔細考慮其他的生活史特徵與適應性成分。zh_TW
dc.description.abstractClimate change has a wide range of influences on organisms. Understanding how organism adapt to thermal variation is critical to forecast the fate of species in the warming world. Most of the previous studies focused on species’ thermal tolerance, but not other important fitness components such as reproduction, varied across different thermal environments. Therefore, how the different fitness components were influenced by climate remains poorly understood. Here, we test two hypotheses about climate adaptation: climate variation hypothesis, and thermal optimum hypothesis, through investigating the thermal tolerance and breeding performance of two populations of burying beetles (Nicrophorus nepalensis Hope 1831) from different latitudes (Amami island: 28°15'12.7'N, and Mt. Hehuan: 24°10'48.2'N). We found that the range of thermal tolerance of the Amami population was broader than that of the Hehuan population, supporting the climate variation hypothesis. However, beetles from the Amami population had better breeding performance than those from the Hehuan population after successfully preparing their breeding resources (i.e. burying carcasses) in every tested temperature. On the other hand, beetles from the Hehuan population had better burying performance than those from Amami population especially in high temperature, and the two populations had no difference in finally fitness at every tested temperature. Our results showed that reproductive performance, which involved in multiple steps such as carcass burial, and larva hatching, is affected by more complicated mechanisms than that of adult physiological tolerance. Our findings also showed the necessity to comprehensively understand the adaptive models of different life history traits.en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:05:45Z (GMT). No. of bitstreams: 1
ntu-108-R05b44015-1.pdf: 631745 bytes, checksum: 182bc5e4758892fe45b8141477e5bc67 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 IV
Chapter 1 前言 1
Chapter 2 材料與方法 3
2.1 研究物種 3
2.2 野外密度調查 3
2.3 室內實驗 3
2.3.1 實驗室埋葬蟲族群建立 4
2.3.2 溫度耐受度實驗 4
2.3.3 繁殖表現 5
2.4 資料分析 6
2.4.1 不同族群的溫度耐受度 6
2.4.2 不同族群繁殖表現隨溫度的變化 6
Chapter 3 結果 7
3.1 棲地環境與溫度耐受度的關係 7
3.2 繁殖表現與溫度的關係 7
3.2.1 適存度 8
3.2.2 埋葬屍體成功率 8
3.2.3 埋葬屍體後的繁殖成功率 8
3.2.4 埋葬屍體後的適存度 8
Chapter 4 討論 9
Chapter 5 參考文獻 11

圖目錄
圖 1、氣候變異度假說模式 14
圖 2、最佳溫度假說模式 15
圖 3、奄美族群與合歡山族群高溫耐受度差異 16
圖 4、奄美族群與合歡山族群低溫耐受度差異 17
圖 5、各溫度下的繁殖成功率 18
圖 6、各溫度下的適存度 19
圖 7、各溫度下埋葬屍體的成功率 20
圖 8、各溫度下埋葬屍體後的繁殖成功率 21
圖 9、各溫度下埋葬屍體後的適存度 22

表目錄
表 1、兩族群繁殖成功率隨溫度變化的變異數分析表(ANOVA table) 23
表 2、各溫度下的適存度的變異數分析表(ANOVA table) 24
表 3、各溫度下埋葬屍體成功率的變異數分析表(ANOVA table) 25
表 4、各溫度下埋葬屍體後繁殖成功率的變異數分析表(ANOVA table) 26
表 5、各溫度下埋葬屍體後適存度的變異數分析表(ANOVA table) 27
dc.language.isozh-TW
dc.subject存活zh_TW
dc.subject溫度適應zh_TW
dc.subject表現曲線zh_TW
dc.subject生活使zh_TW
dc.subject繁殖zh_TW
dc.subjectsurvivalen
dc.subjectthermal adaptationen
dc.subjectperformance curveen
dc.subjectlife-historyen
dc.subjectreproductionen
dc.title尼泊爾埋葬蟲族群在兩島嶼上的溫度適應zh_TW
dc.titleThermal adaptation in two island populations of burying beetles (Nicrophorus nepalensis Hope 1831)en
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊平世,陳一菁,王慧瑜,洪志銘
dc.subject.keyword溫度適應,表現曲線,生活使,繁殖,存活,zh_TW
dc.subject.keywordthermal adaptation,performance curve,life-history,reproduction,survival,en
dc.relation.page27
dc.identifier.doi10.6342/NTU201900713
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-04-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf616.94 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved