Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorJU-YU HOOen
dc.contributor.author胡祖禹zh_TW
dc.date.accessioned2022-11-23T09:14:42Z-
dc.date.available2022-03-07
dc.date.available2022-11-23T09:14:42Z-
dc.date.copyright2022-03-07
dc.date.issued2022
dc.date.submitted2022-02-14
dc.identifier.citation[1] M. Chhowalla, D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors, Nature Reviews Materials, 1 (2016), 16052. [2] J. Cai, IEDM 2019 Short Course 1-2: Device Technology for 3nm and beyond. [3] S. Kim, M. Yokoyama, N. Taoka, R. Iida, S.H. Lee, R. Nakane, Experimental study on electron mobility in InxGa1-xAs-on-insulator metal-oxide-semiconductor field-effect transistors with in content modulation and MOS interface buffer engineering, IEEE Transactions on Nanotechnology, 12 (2013), 621–8. [4] B. Yu, L. Wang, Y. Yuan, P.M. Asbeck, Y. Taur, Scaling of Nanowire Transistors, IEEE Transactions on Electron Devices, 55 (2008), 2846–58. [5] D. Jena, Tunneling Transistors Based on Graphene and 2-D Crystals, Proceedings of the IEEE, 101 (2013), 1585–602. [6] J. Roberson. Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18 (2000), 1785. [7] E. Schilirò, R. Lo Nigro, F. Roccaforte, F. Giannazzo, Substrate-driven atomic layer deposition of high- dielectrics on 2D Materials. Applied Sciences, 11 (2021), 11052. [8] X. Wang, S.M. Tabakman, H. Dai, Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Socciety, 130 (2008), 8152–3. [9] W. Cheol Shin, T. Yong Kim, O. Sul, B. Jin Cho, Seeding atomic layer deposition of high- dielectric on graphene with ultrathin poly(4-vinylphenol) layer for enhanced device performance and reliability, Applied Physics Letter, 101 (2012), 033507. [10] C. Wirtz, T. Hallam, C.P. Cullen, N.C. Berner, M. O’Brien, M. Marcia M, A. Hirsch, G.S. Duesberg, Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers, Chemical Communications. 51 (2015),16553–6. [11] B. Fallahazad, K. Lee, G. Lian, S. Kim, C. M. Corbet, D. A. Ferrer, L. Colombo, E. Tutuc, Scaling of Al2O3 dielectric for graphene field-effect transistors, Applied Physics Letters, 100 (2012), 093112. [12] T. Guo, H. Wu, X. Su, Q. Guo, C. Liu, Surface functionalization toward top-gated monolayer MoS2 field-effect transistors with ZrO2/Al2O3 as composite dielectrics, Journal of Alloys Compound. 871 (2021), 159116. [13] W.J. Woo, I.K. Oh, B.E. Park, Y. Kim, J. Park, S. Seo, J.G. Song, H. Jung, D. Kim, J.H. Lim, S. Lee, H. Kim. Bi-layer high- dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition, 2D Materials, 6 (2018), 015019. [14] H. Zhang, G. Arutchelvan, J. Meersschaut, A. Gaur, T. Conard, H. Bender, D. Lin, I. Asselberghs, M. Heyns, I. Radu, W. Vandervorst, A. Delabie, MoS2 Functionalization with a sub-nm thin SiO2 layer for atomic layer deposition of high-κ dielectrics. Chemistry of Materials, 29 (2017), 6772–80. [15] Y. Zhang, Z. Qiu, X. Cheng, H. Xie, H. Wang, X. Xie, Y. Yu, R. Liu, Direct growth of high-quality Al2O3 dielectric on graphene layers by low-temperature H2O-based ALD. Journal of Physics D: Applied Physics, 47 (2014), 055106. [16] G. Fisichella, E. Schilirò, S.D. Franco, P. Fiorenza, R.L. Nigro, F. Roccaforte, S. Ravesi, F. Giannazzo, Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in-situ seedlike layer. ACS Applied Materials Interfaces, 9 (2017), 7761–71. [17] Y.S. Lin, P.H. Cheng, K.W. Huang K-W, H.C. Lin, M.J. Chen, Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization, Applied Surface Science, 443 (2018), 421–8. [18] F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J.C. Ho, X.-s. Chen, W. Lu, L. Liao, W.-d. Hu, High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Advanced Functional Materials, 26 (2016), 6084–90. [19] Y.M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Operation of graphene transistors at gigahertz frequencies, Nano Letter, 9 (2009), 422–426. [20] B. Lee, G. Mordi, M.J. Kim, Y.J. Chabal, E.M. Vogel, R.M. Wallace, K.J. Cho, L. Colombo, J. Kim, Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. Applied Physics Letter, 97 (2010), 043107. [21] G. Lee, B. Lee, J. Kim, K. Cho, Ozone adsorption on graphene: ab initio study and experimental validation. Journal of Physical Chemistry, 113 (2009), 14225–9. [22] B. Lee, S-Y. Park, H-C. Kim, K. Cho, E.M. Vogel, M.J. Kim, R.M. Wallace, J. Kim, Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Applied Physics Letter, 92 (2008), 203102. [23] A. Azcat, K.C. Santosh, X. Peng, N. Lu, S. Mc.Donne, X. Qin, F. Dios, R. Addou, J. Kim, M.J. Kim, K. Cho, R.M. Wallace. HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Materials, 2 (2015), 014004. [24] J. Yang, S. Kim, W. Choi, S.H. Park, Y. Jung, M.-H. Cho, H. Kim, Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment, ACS Applied Materials Interfaces, 5 (2013), 4739–44. [25] O.M. Nayfeh, T. Marr, M. Dubey, Impact of plasma-assisted atomic-layer-deposited gate dielectric on graphene transistors, IEEE Electron Device Letters, 32 (2011), 473–5. [26] T. Lim, D. Kim, S. Ju, Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment, Applied Physics Letters, 103 (2013), 013107. [27] A.I. Aria, K. Nakanishi, L. Xiao, P. Braeuninger-Weimer, A.A. Sagade, J.A. Alexander-Webber, S. Hofmann, Parameter space of atomic layer deposition of ultrathin oxides on graphene. ACS Applied Materials Interfaces, 8 (2016), 30564–75. [28] I. Kwak, M. Kavrik, J.H. Park, L. Grissom, B. Fruhberger, K.T. Wong, S. Kang, A.C. Kummel, Low interface trap density in scaled bilayer gate oxides on 2D materials via nanofog low temperature atomic layer deposition. Applied Surface Science, 463 (2019), 758–66. [29] T. Park, H. Kim, M. Leem, W. Ahn, S. Choi, J. Kim, J. Uh, K. Kwon, S.-J Jeong, S. Park, Y. Kim, H. Kim, Atomic layer deposition of Al2O3 on MoS2, WS2, WSe2, and h-BN: surface coverage and adsorption energy. RSC Advances, 7 (2017), 884–9. [30] T. Nam, S. Seo, H. Kim, Atomic layer deposition of a uniform thin film on two-dimensional transition metal dichalcogenides. Journal of Vacuum Science Technology A, 38 (2020), 030803. [31] S.-J. Jeong, H.W. Kim, J. Heo, M.-H. Lee, H.J. Song, J. Ku, Y. Lee, Y. Cho, W. Jeon, H. Suh, S. Hwang, S. Park, Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics, 2D Materials, 3 (2016), 035027 [32] T. Muneshwar, K. Cadien, Surface reaction kinetics in atomic layer deposition: An analytical model and experiments. Journal of Applied Physics, 124 (2018), 095302. [33] I. Langmuir, The Adsorption of gases on plane surfaces of glass, mica and platinum, Journal of America Chemistry Society, 40 (1918), 1361–403. [34] H. -S. Philip Wong, Deji Akinwande, Carbon Nanotube and Graphene Device Physics, Cambridge University Press, 2011. [35] Cambridge NanoTech Inc. (2009). Savannah 100, 200 300 Atomic Layer Deposition System Maintenance Manual. [36] G.P. Gakis, H. Vergnes, E. Scheid, Vahlas C, Caussat B, A.G. Boudouvis, Computational fluid dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor, Chemical Engineering Research and Design, 132 (2018), 795–811. [37] M.Y. Li, S.K. Su, H.-S.P. Wong, L.J. Li, How 2D semiconductors could extend Moore’s law, Nature, 567 (2019), 169–70. [38] I. Kwak, J.H. Park, L. Grissom, B. Fruhberger, A. Kummel A. Mechanism of low temperature ALD of Al2O3 on graphene terraces. ECS Transactions, 75 (2016), 143. [39] X. Liu, J. Hu, C. Yue, N.D. Fera, Y. Ling, Z. Mao, J. Wei. High performance field-effect transistor based on multilayer tungsten disulfide, ACS Nano, 8 (2014), 10396–402. [40] Y. Xuan, Y.Q. Wu, T. Shen, M. Qi, M.A. Capano, J.A. Cooper, P.D. Yea, Atomic-layer-deposited nanostructures for graphene-based nanoelectronics, Applied Physics Letters, 92 (2008), 13101. [41] C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, L.M. Peng L, Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science, 355 (2017), 271–6. [42] C.S. Lee, E. Pop, A.D. Franklin, W. Haensch, H.-S.P. Wong. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: intrinsic elements, IEEE Transactions Electron Devices, 62 (2015), 3061–9. [43] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.J. King, J. Bokor, C.-M. Hu, M.R. Lin, D. Kyser, FinFET scaling to 10 nm gate length, Digest International Electron Devices Meeting 2002, p. 251–4. [44] B. Doris, M. Ieong, T. Zhu, Y. Zhang, M. Steen, W. Natzle, S. Callegari, V. Narayanan, J. Cai, S. Ku, P. Jamison, Y. Li, Z. Ren, V. Ku, T. Boyd, T. Kanarsky, C. D'Emic, M. Newport, D. Dobuzinsky, S. Deshpande, J. Petrus, R. Jammy, W. Haensch, Device design considerations for ultra-thin SOI MOSFETs, IEEE International Electron Devices Meeting 2003, p. 27.3.1-27.3.4. [45] M. Li, K.H. Yeo, S.D. Suk, Y.Y. Yeoh, D.-W. Kim, T.Y. Chung, K.S. Oh, W.-S. Lee, Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate, Symposium on VLSI Technology 2009, p. 94–5. [46] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai, High-κ dielectrics for advanced carbon-nanotube transistors and logic gates, Nature Materials, 1 (2002), 241–6. [47] A.D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, W. Haensch, Sub-10 nm carbon nanotube transistor. Nano Letters, 12 (2012), 758–62. [48] C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, L.-M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science, 355 (2017), 271-6. [49] Y.S. Lin, I. Kwak, T.F. Chung, J.R. Yang, A.C. Kummel, M.J. Chen, Nucleation engineering for atomic layer deposition of uniform sub-10 nm high-K dielectrics on MoTe2, Applied Surface Science, 492 (2019), 239–44. [50] Y.S. Lin, J.Y. Hoo, T.F. Chung, J.R. Yang, M.J. Chen, Low-temperature physical adsorption for the nucleation of sub-10 nm Al2O3 gate stack on top-gated WS2 transistors. ACS Applied Electron Materials, 2 (2020), 1289–94. [51] G. Pitner, Z. Zhang, Q. Lin, S.-K Su, C. Gilardi, C. Kuo, H. Kashyap, T. Weiss, Z. Yu, T.-A. Chao, L.-J. Li, S. Mitra, H.-S. P. Wong, J. Cai, A. Kummel, P. Bandaru, M. Passlack, Sub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm gate length, IEEE International Electron Devices Meeting (IEDM), 2020, p. 3.5.1-3.5.4. [52] D.J. Late, B. Liu, H.S.S.R. Matte, C.N.R. Rao, V.P. Dravid, Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Advanced Functional Materials, 22 (2012), 1894–905. [53] A.A. Mitioglu, P. Plochocka, J.N. Jadczak, W. Escoffier, G.L.J.A. Rikken, L. Kulyuk, D.K. Maude, Optical manipulation of the exciton charge state in single-layer tungsten disulfide, Physical Review B, 88 (2013), 245403. [54] D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices, Chemical Society Reviews, 47 (2018), 3037–58. [55] T.A.J. Loh, Y.J. Ooi, D.H.C. Chua, WS2 nano-petals and nano-bristles supported on carbon nanotubes for electron emission applications, Scientific Reports, 9 (2019), 3672. [56] J. Workman, Using raman spectroscopy for characterization of defects and disorder in two-dimensional materials. Spectroscopy Online, 2019. [57] R. Trusovas, G. Račiukaitis, G. Niaura, J. Barkauskas, G. Valušis, R. Pauliukaite, Recent advances in laser utilization in the chemical modification of graphene oxide and its applications, Advanced Optical Materials, 4 (2016), 37–65. [58] G. A.T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, Plasma-assisted atomic layer deposition of palladium, Chemical Vapor Deposition, 11 (2005), 60–6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79871-
dc.description.abstract"在本論文的第一部分,我們製作並研究了上閘極二硫化鎢(WS2)電晶體。採用低溫NanoFog ALD作為成核層及傳統加熱式原子層沉積(Atomic Layer Deposition, ALD)作為主層制備閘極介電層。汲極電流對閘極電壓(Id-Vg)的特性曲線顯示二硫化鎢電晶體的開關比高達106,次臨界擺幅低至83 mV/dec,且閘極漏電流為雜訊等級。 論文的第二部分利用原子層播種(Atomic Layer Seeding, ALS)技術研究了氧化鋯(ZrO2)在高定向熱解石墨(highly oriented pyrolytic graphite, HOPG)上的成核行為,並調查了溫度和前驅體/反應物劑量對反應的影響。在良好的製程條件下,可實現表面粗糙度(Ra)低至0.331nm的均勻覆蓋。進一步的拉曼光譜分析表明,ALS技術並沒有對HOPG基板造成結構損傷。 在本論文的最後一部分,通過20次ALD循環的低功率遠程電漿增強原子層播種(remote plasma atomic layer seeding, RPALS)技術,可以在HOPG上均勻覆蓋氮化矽(SiNx)薄膜。20次ALD循環的RPALS 氮化矽加上40次循環的ALD 氧化鉿(HfO2)的總等效氧化層厚度(equivalent oxide thickness, EOT)為2.21nm。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:14:42Z (GMT). No. of bitstreams: 1
U0001-2701202215000300.pdf: 5386103 bytes, checksum: d2347099b345d5b52ba0f9d3a16df2fd (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i ABSTRACT ii CONTENTS iii LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Advantages of 2D materials 1 1.2 Overview of ALD on 2D Materials 4 1.3 Overview of Carbon Nanotubes (CNT) 10 1.4 Atomic Layer Deposition 18 1.5 Atomic Force Microscopy (AFM) 24 1.6 Raman Spectroscopy 25 1.7 X-ray Photoelectron Spectroscopy (XPS) 25 1.8 Motivation 27 Chapter 2 Top-Gated WS2 Transistor with Sub-10nm High-K Gate Stack 31 2.1 Experimental Section 31 2.1.1 Mechanical exfoliation 31 2.1.2 NanoFog ALD (NF-ALD) 33 2.1.3 Photolithography 35 2.1.4 Thermal Evaporation 35 2.1.5 Reactive Ion Etching (RIE) 36 2.1.6 Sputtering 36 2.1.7 Fabrication of top-gated WS2-FET 37 2.2 Results and Discussion 39 2.2.1 Nucleation Engineering of Al2O3 on WS2 39 2.2.2 Top-Gated WS2-FETs 42 2.2.3 XPS Examination 44 Chapter 3 Nucleation Engineering for Atomic Layer Deposition of Uniform Zirconium Oxide on HOPG 46 3.1 Experimental Section 46 3.1.1 Atomic Force Microscope (AFM) 46 3.1.2 Atomic Layer Seeding (ALS) 47 3.2 Results and Discussion 49 3.2.1 NanoFog ALD (NF-ALD) 49 3.2.2 Atomic Layer Seeding (ALS) 51 3.2.2.1 Effect of Temperature 51 3.2.2.2 Effect of Dose 53 3.2.3 X-ray Photoelectron Spectroscopy (XPS) 55 3.2.4 Raman Spectroscopy 56 Chapter 4 Uniform Silicon Nitride Deposition on Highly Oriented Pyrolytic Graphite by Remote Plasma Atomic Layer Seeding 58 4.1 Experimental section 58 4.1.1 Remote Plasma Atomic Layer Seeding 58 4.1.2 MIM capacitor fabrication 60 4.2 Results and discussion 61 4.2.1 Effect of Plasma Power and Cycle Number 61 4.2.2 Raman Spectroscopy 63 4.2.3 Electrical Characteristic of MIM Capacitor 64 4.2.4 H2 Plasma Assisted Remote Plasma Atomic Layer Seeding 67 Chapter 5 Conclusions 69 REFERENCE 70
dc.language.isoen
dc.subject高定向熱解石墨zh_TW
dc.subject原子層沉積zh_TW
dc.subject二維材料zh_TW
dc.subject高介電係數閘極介電層zh_TW
dc.subject場效電晶體zh_TW
dc.subject過渡金屬二硫化物zh_TW
dc.subjecttwo dimensional materialsen
dc.subjecthighly oriented pyrolytic graphiteen
dc.subjecttransition metal dichalcogenidesen
dc.subjectfield-effect transistorsen
dc.subjectAtomic layer depositionen
dc.subjecthigh-K gate dielectricsen
dc.title利用原子層沉積技術成長高介電常數介電層於二硫化鎢及高定向熱解石墨之成核工程zh_TW
dc.titleNucleation Engineering for Atomic Layer Deposition of High-K Gate Dielectric on WS2 and HOPGen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-8784-9274
dc.contributor.oralexamcommittee蔡豐羽(Hsin-Tsai Liu),陳良益(Yung-Ling Chi),吳肇欣
dc.subject.keyword原子層沉積,二維材料,高介電係數閘極介電層,場效電晶體,過渡金屬二硫化物,高定向熱解石墨,zh_TW
dc.subject.keywordAtomic layer deposition,two dimensional materials,high-K gate dielectrics,field-effect transistors,transition metal dichalcogenides,highly oriented pyrolytic graphite,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202200232
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2701202215000300.pdf5.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved