請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79860完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林招松(Chao-Sung Lin) | |
| dc.contributor.author | Kuo-Min Hsu | en |
| dc.contributor.author | 徐國閔 | zh_TW |
| dc.contributor.author | f06527047 | |
| dc.date.accessioned | 2022-11-23T09:14:14Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-23T09:14:14Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-27 | |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004) 299-303. [2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375-377 (2004) 213-218. [3] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511. [4] J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Matériaux, 31 (2006) 633-648. [5] I. Tomilin, S.J.M.S. Kaloshkin, Technology, ‘High entropy alloys’—‘semi-impossible’regular solid solutions?, Materials Science and Technology, 31 (2015) 1231-1234. [6] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18 (2010) 1758-1765. [7] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 698-706. [8] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 16 (2014) 494-525. [9] R. Kozak, A. Sologubenko, W. Steurer, Single-phase high-entropy alloys – an overview, Zeitschrift für Kristallographie - Crystalline Materials, 230 (2015) 55-68. [10] D.B. Miracle, Critical Assessment 14: High entropy alloys and their development as structural materials, Materials Science and Technology, 31 (2015) 1142-1147. [11] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52 (2010) 2571-2581. [12] Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, T. Egami, Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, Jom, 65 (2013) 1848-1858. [13] M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scripta Materialia, 72-73 (2014) 5-8. [14] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Materialia, 116 (2016) 332-342. [15] D. Li, Y. Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70 (2016) 24-28. [16] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534 (2016) 227-230. [17] Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci Rep, 7 (2017) 40704. [18] Z. Li, D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties, JOM (1989), 69 (2017) 2099-2106. [19] Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Materialia, 131 (2017) 323-335. [20] Z.H. Han, S. Liang, J. Yang, R. Wei, C.J. Zhang, A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment, Materials Characterization, 145 (2018) 619-626. [21] T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362 (2018) 933-937. [22] Z. Fu, B.E. MacDonald, Z. Li, Z. Jiang, W. Chen, Y. Zhou, E.J. Lavernia, Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility, Materials Research Letters, 6 (2018) 634-640. [23] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Materialia, 163 (2019) 40-54. [24] P. Wu, K. Gan, D. Yan, Z. Fu, Z. Li, A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy, Corrosion Science, 183 (2021). [25] Z. Fu, L. Jiang, J.L. Wardini, B.E. Macdonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, E.J. Lavernia, A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Science Advances, 4 (2018) eaat8712. [26] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755. [27] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39 (2013) 74-78. [28] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153-1158. [29] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia, 59 (2011) 6308-6317. [30] Y. Shi, B. Yang, P. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 7 (2017). [31] K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions, Acta Materialia, 164 (2019) 362-376. [32] T. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, P. Lu, J.E. Saal, J.R. Scully, Localized corrosion behavior of a single-phase non-equimolar high entropy alloy, Electrochimica Acta, 306 (2019) 71-84. [33] Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x= 0, 0.2, 0.5, 0.8, 1) high entropy alloys, Journal of Alloys and Compounds, 820 (2020) 153273. [34] A.Y. Gerard, J. Han, S.J. McDonnell, K. Ogle, E.J. Kautz, D.K. Schreiber, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film, Acta Materialia, 198 (2020) 121-133. [35] J.R. Scully, S.B. Inman, A.Y. Gerard, C.D. Taylor, W. Windl, D.K. Schreiber, P. Lu, J.E. Saal, G.S. Frankel, Controlling the corrosion resistance of multi-principal element alloys, Scripta Materialia, 188 (2020) 96-101. [36] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia, 118 (2016) 152-163. [37] S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Materials Design, 133 (2017) 122-127. [38] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Materialia, 96 (2015) 258-268. [39] Z. Li, Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior, Acta Materialia, 164 (2019) 400-412. [40] H. Xiao, Y. Liu, K. Wang, Z. Wang, T. Hu, T. Fan, L. Ma, P. Tang, Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) High-Entropy Alloys: A First-Principles Study, Acta Metallurgica Sinica (English Letters), 34 (2020) 455-464. [41] H.-U. Jeong, N. Park, TWIP and TRIP-associated mechanical behaviors of Fe (CoCrMnNi) medium-entropy ferrous alloys, Materials Science and Engineering: A, 782 (2020). [42] W. Guo, J. Su, W. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y. Xue, G. Dehm, Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy, Acta Materialia, 185 (2020) 45-54. [43] Z. Bou-Saleh, A. Shahryari, S. Omanovic, Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization, Thin Solid Films, 515 (2007) 4727-4737. [44] A. Fattah-Alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM), Corrosion Science, 53 (2011) 3186-3192. [45] S. Hastuty, E. Tada, A. Nishikata, Y. Tsutsumi, T. Hanawa, Improvement of pitting corrosion resistance of type 430 stainless steel by electrochemical treatments in a concentrated nitric acid, ISIJ international, 54 (2014) 199-205. [46] Z. Zheng, Y. Zheng, Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution, Corrosion Science, 112 (2016) 657-668. [47] Y. Hou, J. Zhao, T.S. Cao, L. Zhang, X.M. Meng, Z.P. Zhang, C.Q. Cheng, Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment, Materials and Corrosion, 70 (2019) 1764-1775. [48] J. Liu, T. Zhang, G. Meng, Y. Shao, F. Wang, Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation, Corrosion Science, 91 (2015) 232-244. [49] J. Li, Q. Wang, Y. Yang, Z. Wu, L. Tan, Y. Ren, K. Yang, Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation, Journal of The Electrochemical Society, 166 (2019) C365. [50] L.-F. Li, P. Caenen, M. Daerden, D. Vaes, G. Meers, C. Dhondt, J.-P. Celis, Mechanism of single and multiple step pickling of 304 stainless steel in acid electrolytes, Corrosion Science, 47 (2005) 1307-1324. [51] D.R. Gaskell, Introduction to the Thermodynamics of Materials, Fifth Edition, Taylor Francis, 2008. [52] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Jom, 67 (2015) 2254-2261. [53] A. Takeuchi, A. Inoue, Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys, Intermetallics, 18 (2010) 1779-1789. [54] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893. [55] H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surface and Coatings Technology, 202 (2008) 3360-3366. [56] M.H. Tsai, J.W. Yeh, J.Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 516 (2008) 5527-5530. [57] J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, J.-W. Yeh, Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations, Journal of Alloys and Compounds, 674 (2016) 455-462. [58] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897. [59] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys, Scientific Reports, 7 (2017). [60] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Alloys and Compounds, 688 (2016) 994-1001. [61] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia, 146 (2018) 211-224. [62] I. Florea, R.M. Florea, O. Bǎlţǎtescu, V. Soare, R. Chelariu, I. Carcea, High entropy alloys, Journal of Optoelectronics and Advanced Materials, 15 (2013) 761-767. [63] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science, 85 (2003) 1404-1406. [64] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Materialia, 135 (2017) 177-187. [65] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, Journal of Materials Research, 33 (2018) 3092-3128. [66] H. Yao, Y. Liu, X. Sun, Y. Lu, T. Wang, T. Li, Microstructure and mechanical properties of Ti3V2NbAlxNiy low-density refractory multielement alloys, Intermetallics, 133 (2021). [67] O.N. Senkov, D. Isheim, D.N. Seidman, A.L. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy, 18 (2016) 102. [68] O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Materials Design, 139 (2018) 498-511. [69] O.A. Waseem, J. Lee, H.M. Lee, H.J. Ryu, The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials, Materials Chemistry and Physics, 210 (2018) 87-94. [70] X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium, JOM, 66 (2014) 2009-2020. [71] V.H. Hammond, M.A. Atwater, K.A. Darling, H.Q. Nguyen, L.J. Kecskes, Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying, JOM, 66 (2014) 2021-2029. [72] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures, Materials Research Letters, 3 (2015) 95-99. [73] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams, JOM, 66 (2014) 1984-1992. [74] M. Feuerbacher, M. Heidelmann, C. Thomas, Hexagonal High-entropy Alloys, Materials Research Letters, 3 (2015) 1-6. [75] Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, A hexagonal close-packed high-entropy alloy: The effect of entropy, Materials Design, 96 (2016) 10-15. [76] A. Jelen, J.H. Jang, J. Oh, H.J. Kim, A. Meden, S. Vrtnik, M. Feuerbacher, J. Dolinšek, Nanostructure and local polymorphism in “ideal-like” rare-earths-based high-entropy alloys, Materials Characterization, 172 (2021). [77] R. Soler, A. Evirgen, M. Yao, C. Kirchlechner, F. Stein, M. Feuerbacher, D. Raabe, G. Dehm, Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure, Acta Materialia, 156 (2018) 86-96. [78] K.J. Laws, C. Crosby, A. Sridhar, P. Conway, L.S. Koloadin, M. Zhao, S. Aron-Dine, L.C. Bassman, High entropy brasses and bronzes – Microstructure, phase evolution and properties, Journal of Alloys and Compounds, 650 (2015) 949-961. [79] T. Nagase, A. Shibata, M. Matsumuro, M. Takemura, S. Semboshi, Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium-entropy brasses, Materials Design, 181 (2019). [80] S. Sohn, Y. Liu, J. Liu, P. Gong, S. Prades-Rodel, A. Blatter, B.E. Scanley, C.C. Broadbridge, J. Schroers, Noble metal high entropy alloys, Scripta Materialia, 126 (2017) 29-32. [81] F. Thiel, D. Geissler, K. Nielsch, A. Kauffmann, S. Seils, M. Heilmaier, D. Utt, K. Albe, M. Motylenko, D. Rafaja, J. Freudenberger, Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt, Acta Materialia, 185 (2020) 400-411. [82] H.J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, S. Sun, Nanoporous high-entropy alloys for highly stable and efficient catalysts, Journal of Materials Chemistry A, 7 (2019) 6499-6506. [83] T. Löffler, A. Savan, A. Garzón-Manjón, M. Meischein, C. Scheu, A. Ludwig, W. Schuhmann, Toward a Paradigm Shift in Electrocatalysis Using Complex Solid Solution Nanoparticles, ACS Energy Letters, 4 (2019) 1206-1214. [84] G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction, Electrochimica Acta, 279 (2018) 19-23. [85] T. Löffler, H. Meyer, A. Savan, P. Wilde, A. Garzón Manjón, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann, Discovery of a Multinary Noble Metal-Free Oxygen Reduction Catalyst, Advanced Energy Materials, 8 (2018). [86] P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Highly efficient decomposition of ammonia using high-entropy alloy catalysts, Nat Commun, 10 (2019) 4011. [87] P. Ma, M. Zhao, L. Zhang, H. Wang, J. Gu, Y. Sun, W. Ji, Z. Fu, Self- supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition, Journal of Materiomics, 6 (2020) 736-742. [88] H.J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction, ACS Materials Letters, 1 (2019) 526-533. [89] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563 (2018) 546-550. [90] M. Wang, Z. Li, D. Raabe, In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy, Acta Materialia, 147 (2018) 236-246. [91] H. Luo, S. Zou, Y.H. Chen, Z. Li, C. Du, X. Li, Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution, Corrosion Science, 163 (2020). [92] E. Astafurova, E. Melnikov, S. Astafurov, K. Reunova, M. Panchenko, V. Moskvina, I. Tumbusova, A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal–mechanical treatments, Materials Letters, 285 (2021). [93] E.G. Astafurova, M.Y. Panchenko, K.A. Reunova, A.S. Mikhno, V.A. Moskvina, E.V. Melnikov, S.V. Astafurov, H.J. Maier, The effect of nitrogen alloying on hydrogen-assisted plastic deformation and fracture in FeMnNiCoCr high-entropy alloys, Scripta Materialia, 194 (2021). [94] L. Guirong, G. Lipeng, W. Hongming, L. Ming, W. Changwen, W. Haoran, Y. Yuwei, R. Wenxiang, L. Jiaqi, Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy, Journal of Alloys and Compounds, 866 (2021). [95] M. Traversier, P. Mestre-Rinn, N. Peillon, E. Rigal, X. Boulnat, F. Tancret, J. Dhers, A. Fraczkiewicz, Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA), Materials Science and Engineering: A, 804 (2021). [96] J. Lv, W. Guo, T. Liang, The effect of pre-deformation on corrosion resistance of the passive film formed on 2205 duplex stainless steel, Journal of Alloys and Compounds, 686 (2016) 176-183. [97] C. Örnek, M. Långberg, J. Evertsson, G. Harlow, W. Linpé, L. Rullik, F. Carlà, R. Felici, U. Kivisäkk, E. Lundgren, Influence of surface strain on passive film formation of duplex stainless steel and its degradation in corrosive environment, Journal of the Electrochemical Society, 166 (2019) C3071. [98] Z. Mi, L. Chen, H. Liu, C. Shi, D. Wang, X. Li, K. Gao, L. Qiao, Synergistic Effect of Hydrogen and Strain on Electronic Properties of the p-Cr2O3/n-Fe2O3 Interface, The Journal of Physical Chemistry C, 125 (2021) 6351-6358. [99] X. Wang, D. Li, Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel, Wear, 255 (2003) 836-845. [100] X. Wang, D. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochimica Acta, 47 (2002) 3939-3947. [101] X. Fu, Y. Ji, X. Cheng, C. Dong, Y. Fan, X. Li, Effect of grain size and its uniformity on corrosion resistance of rolled 316L stainless steel by EBSD and TEM, Materials Today Communications, 25 (2020). [102] C.B. Nascimento, U. Donatus, C.T. Ríos, R.A. Antunes, Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution, Journal of Materials Research and Technology, 9 (2020) 13879-13892. [103] K. Ralston, N. Birbilis, Effect of grain size on corrosion: a review, Corrosion, 66 (2010) 075005-075005-075013. [104] W. Ye, Y. Li, F. Wang, Effects of nanocrystallization on the corrosion behavior of 309 stainless steel, Electrochimica acta, 51 (2006) 4426-4432. [105] C. Kwok, F. Cheng, H.C. Man, W. Ding, Corrosion characteristics of nanostructured layer on 316L stainless steel fabricated by cavitation-annealing, Materials Letters, 60 (2006) 2419-2422. [106] A. Di Schino, J. Kenny, Effect of grain size on the corrosion resistance of a high nitrogen-low nickel austenitic stainless steel, Journal of Materials Science Letters, 21 (2002) 1969-1971. [107] Z. Han, W. Ren, J. Yang, A. Tian, Y. Du, G. Liu, R. Wei, G. Zhang, Y. Chen, The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys, Journal of Alloys and Compounds, 816 (2020) 152583. [108] Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corrosion Science, 52 (2010) 3481-3491. [109] V. Soare, D. Mitrica, I. Constantin, V. Badilita, F. Stoiciu, A.M.J. Popescu, I. Carcea, Influence of remelting on microstructure, hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy, Materials Science and Technology, 31 (2015) 1194-1200. [110] N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, K.L. Murty, Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy, Journal of Nuclear Materials, 495 (2017) 154-163. [111] A. Rodriguez, J.H. Tylczak, M. Ziomek-Moroz, Corrosion Behavior of CoCrFeMnNi High-Entropy Alloys (HEAs) Under Aqueous Acidic Conditions, ECS Transactions, 77 (2017) 741-752. [112] Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science, 396 (2017) 1420-1426. [113] H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corrosion Science, 134 (2018) 131-139. [114] J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, Journal of Alloys and Compounds, 819 (2020). [115] L. Wang, D. Mercier, S. Zanna, A. Seyeux, M. Laurent-Brocq, L. Perrière, I. Guillot, P. Marcus, Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS, Corrosion Science, 167 (2020). [116] Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corrosion Science, 119 (2017) 33-45. [117] Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance, Corrosion Science, 133 (2018) 120-131. [118] Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corrosion Science, 52 (2010) 1026-1034. [119] C. Wang, J. Yu, Y. Yu, Y. Zhao, Y. Zhang, X. Han, Comparison of the corrosion and passivity behavior between CrMnFeCoNi and CrFeCoNi coatings prepared by argon arc cladding, Journal of Materials Research and Technology, 9 (2020) 8482-8496. [120] H. Torbati-Sarraf, M. Shabani, P.D. Jablonski, G.J. Pataky, A. Poursaee, The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures, Materials Design, 184 (2019). [121] Z. Tang, L. Huang, W. He, P. Liaw, Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys, Entropy, 16 (2014) 895-911. [122] W. Chai, T. Lu, Y. Pan, Corrosion behaviors of FeCoNiCrx (x= 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation, Intermetallics, 116 (2020) 106654. [123] Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Materials Chemistry and Physics, 92 (2005) 112-117. [124] M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Why stainless steel corrodes, Nature, 415 (2002) 770-774. [125] Q. Meng, G.S. Frankel, H.O. Colijn, S.H. Goss, Metallurgy: stainless-steel corrosion and MnS inclusions, Nature, 424 (2003) 389-390; discussion 390. [126] C.O.A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochimica Acta, 48 (2003) 1093-1104. [127] H. Krawiec, V. Vignal, O. Heintz, R. Oltra, Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels, Electrochimica Acta, 51 (2006) 3235-3243. [128] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corrosion Science, 50 (2008) 1796-1806. [129] A. Chiba, I. Muto, Y. Sugawara, N. Hara, Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions, Journal of The Electrochemical Society, 160 (2013) C511. [130] H. Krawiec, V. Vignal, O. Heintz, R. Oltra, J.-M. Olive, Influence of the chemical dissolution of MnS inclusions on the electrochemical behavior of stainless steels, Journal of the Electrochemical Society, 152 (2005) B213. [131] E.G. Webb, R.C. Alkire, Pit initiation at single sulfide inclusions in stainless steel: II. Detection of local pH, sulfide, and thiosulfate, Journal of the Electrochemical Society, 149 (2002) B280. [132] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Materialia, 112 (2016) 40-52. [133] E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Materialia, 113 (2016) 106-109. [134] Y.-K. Kim, G.-S. Ham, H.S. Kim, K.-A. Lee, High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading, Intermetallics, 111 (2019) 106486. [135] N. Choi, N. Park, J.-k. Kim, A.V. Karasev, P.G. Jönsson, J.H. Park, Influence of Manufacturing Conditions on Inclusion Characteristics and Mechanical Properties of FeCrNiMnCo Alloy, Metals, 10 (2020) 1286. [136] L. Pao, I. Muto, Y. Sugawara, Pitting at inclusions of the equiatomic CoCrFeMnNi alloy and improving corrosion resistance by potentiodynamic polarization in H2SO4, Corrosion Science, 191 (2021) 109748. [137] R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, The passivity of iron-chromium alloys, Corrosion Science, 29 (1989) 899-917. [138] R. Kirchheim, B. Heine, S. Hofmann, H. Hofsäss, Compositional changes of passive films due to different transport rates and preferential dissolution, Corrosion Science, 31 (1990) 573-578. [139] V. Maurice, W.P. Yang, P. Marcus, x-ray photoelectron spectroscopy and scanning tunneling micrscopy study of passive films formed on 100 Fe-18Cr-13Ni, Journal of The Electrochemical Society, 145 (1998) 909-920. [140] S. Sahu, O.J. Swanson, T. Li, A.Y. Gerard, J.R. Scully, G.S. Frankel, Localized Corrosion Behavior of Non-Equiatomic NiFeCrMnCo Multi-Principal Element Alloys, Electrochimica Acta, 354 (2020). [141] C.W. Lu, Y.S. Lu, Z.H. Lai, H.W. Yen, Y.L. Lee, Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution, Journal of Alloys and Compounds, 842 (2020). [142] Y.S. Lu, C.W. Lu, Y.T. Lin, H.W. Yen, Y.L. Lee, Corrosion behavior and passive film characterization of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy in sulfuric acid solution, Journal of The Electrochemical Society, 167 (2020) 081506. [143] V. Maurice, W. Yang, P. Marcus, XPS and STM study of passive films formed on Fe‐22Cr (110) single‐crystal surfaces, Journal of the Electrochemical Society, 143 (1996) 1182. [144] X. Peng, Y. Zhang, J. Zhao, F. Wang, Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles, Electrochimica Acta, 51 (2006) 4922-4927. [145] A. Lim, A. Atrens, ESCA studies of Ni-Cr alloys, Applied Physics A, 54 (1992) 343-349. [146] T. Nishimura, H. Katayama, K. Noda, T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corrosion Science, 42 (2000) 1611-1621. [147] H. Luo, S. Zou, Y.-H. Chen, Z. Li, C. Du, X. Li, Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution, Corrosion Science, 163 (2020). [148] Y. Yin, J. Zhang, Q. Tan, W. Zhuang, N. Mo, M. Bermingham, M.-X. Zhang, Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility, Materials Design, 162 (2019) 24-33. [149] X.M. Zhu, Y.S. Zhang, Investigation of the Electrochemical Corrosion Behavior and Passive Film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr Alloys in Aqueous Solutions, Corrosion, 54 (1998) 3-12. [150] Y.S. Zhang, X.M. Zhu, Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions, Corrosion Science, 41 (1999) 1817-1833. [151] R.K. Nutor, M. Azeemullah, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, Microstructure and properties of a Co-free Fe50Mn27Ni10Cr13 high entropy alloy, Journal of Alloys and Compounds, 851 (2021). [152] 陳思翰, FeCrNiCoMnx (x=1.0,0.6,0.3,0)高熵合金於0.5M硫酸中的抗蝕性質之研究, in: 材料科學與工程學研究所, 國立臺灣大學, 2021, pp. 1-131. [153] N. Roy, A. Samuel, F. Samuel, Porosity formation in AI-9 Wt pct Si-3 Wt pct Cu alloy systems: Metallographic observations, Metallurgical and Materials transactions A, 27 (1996) 415-429. [154] H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Progress in Materials Science, 52 (2007) 1091-1173. [155] R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, Journal of Alloys and Compounds, 746 (2018) 125-134. [156] G. Salishchev, M. Tikhonovsky, D. Shaysultanov, N. Stepanov, A. Kuznetsov, I. Kolodiy, A. Tortika, O. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, Journal of Alloys and Compounds, 591 (2014) 11-21. [157] M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79860 | - |
| dc.description.abstract | "此研究首次探討50公斤級FeCrNiCoMnx (x = 1.0, 0.6, 0.3, and 0)高熵合金塊材之顯微結構與其在3.5 wt%氯化鈉及0.5 M硫酸腐蝕行為,旨在釐清塊材缺陷與錳含量之影響,此外,使用在不鏽鋼ASTM A380M-17的酸洗亦首次使用並研究於FeCrNiCoMnx以改善含錳FeCrNiCoMnx之鈍化膜穩定性及保護力。錳被發現會偏析在枝間區域且其伽凡尼腐蝕為造成在兩種溶液中腐蝕首先發生的主要原因,此藉1050度C之80%的熱軋及900度C下1.5小時的退火減少偏析,腐蝕電流密度會下降。對於均質化之FeCrNiCoMnx,0.5 M硫酸陽極極化成長之鈍化膜抗蝕能力於0.5 M硫酸中隨著Mn含量的下降而提升,但含錳之FeCrNiCoMnx相比304L不鏽鋼仍不預期的低,此歸因於錳與鉻於鈍化膜中的競爭氧化,導致具保護性之Cr2O3比預期還低之故。然而在沒有偏析情況下,因為硫化錳夾雜物的存在,陽極極化生長之FeCrNiCoMnx鈍化膜穩定性在3.5 wt%氯化鈉及0.5 M硫酸仍沒有獲得改善,由於硫化錳溶解後溶液中含硫物種的影響,施加陽極極化後之含錳類FeCrNiCoMnx在極化後之硫酸浸泡其鈍化膜仍有一定機率發生崩解。 儘管錳於此類合金有負面之影響,錳於機械性質卻有其不可或缺的角色,為解決由硫化錳導致之鈍化膜不穩定的問題,此研究採用先氟硝酸後硝酸之複合酸洗,可消除硫化錳及其含硫物種並使鈍化膜加強鈍化,此方法成功改善含錳類FeCrNiCoMnx鈍化膜在3.5 wt%氯化鈉及0.5 M硫酸的穩定性並提升其抗蝕能力。然而鈍化膜抗蝕能力改善的程度卻隨著Mn含量的下降而跟著下降,且此種複合酸洗對無錳的FeCrNiCo合金卻反而有負面的影響,原因應為在含氫氟酸的酸洗溶液中,與表面鈍化膜中之鉻與錳含量有關,較高的鉻含量會與氫氟酸在氧化膜中形成更多的[Cr(H2O)6]F3,而MnO2可減緩氫氟酸對Cr2O3的攻擊,較低的錳含量則造成更多之Cr2O3與MnO2反應。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:14:14Z (GMT). No. of bitstreams: 1 U0001-2701202215013500.pdf: 11773013 bytes, checksum: 447473e7fe3e18e985fc61cbfa7de7c9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "Content 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Content vi List of Figures x List of Tables xvii Chapter 1 Introduction 1 1.1 Definition 1 1.2 Background 2 1.3 Motivation 4 Chapter 2 Literature review 7 2.1 Four HEA core effects 7 2.1.1 The high entropy effect 7 2.1.2 The sluggish diffusion effect 10 2.1.3 The severe lattice distortion effect 12 2.1.4 The cocktail effect 13 2.2 Common CCA families 13 2.2.1 3d transition metal CCAs 14 2.2.2 Refractory metal CCAs 17 2.2.3 Other alloy families 18 2.3 Factors affecting the corrosion behavior of MPEAs 20 2.3.1 Structure 20 2.3.2 Composition 21 2.3.3 Heterogeneity 22 2.3.4 Environment 23 2.4 The passive film of FeCrNiCoMn 24 2.4.1 NaCl 24 2.4.2 H2SO4 25 2.5 The effects of constituent elements in FeCrNiCoMn 26 2.5.1 Fe 26 2.5.2 Cr 26 2.5.3 Ni 28 2.5.4 Co 28 2.5.5 Mn 28 Chapter 3 Experimental procedure 30 3.1 Alloys fabrication and sample preparation 30 3.2 Materials characterization 32 3.3 Potentiodynamic polarization test 33 3.4 Immersion test 34 3.5 EIS 35 3.6 Characterization of the passive film 35 3.7 Analysis on inclusions 38 3.8 Pickling 38 Chapter 4 Results and discussion 40 4.1 As-cast alloys characterization 40 4.1.1 Etching structure 40 4.1.2 Solidification defects 43 4.2 Hot-rolled FeCrNiCoMn after heat treatments 48 4.2.1 Residual segregation 48 4.2.2 Structural analysis 51 4.3 Corrosion behavior of AC, HR, H-HR alloys 53 4.3.1 3.5 wt % NaCl 53 4.3.2 0.5 M H2SO4 58 4.3.3 Passive film in 0.5 M H2SO4 64 4.3.3.1 EIS 64 4.3.3.2 AES 74 4.3.4 The instability of the passive film 75 4.3.4.3 3.5 wt % NaCl 75 4.3.4.4 0.5 M H2SO4 77 4.4 H-HR FeCrNiCoMnx characterization 79 4.4.1 Structural analysis 79 4.4.2 Inclusion types 81 4.5 Mn influence and inclusion effect on the corrosion behavior 92 4.5.1 3.5 wt % NaCl 92 4.5.2 0.5 M H2SO4 96 4.5.3 Immersion tests in 0.5 M H2SO4 98 4.5.4 The instability of the passive film 105 4.5.5 Passive film 107 4.5.5.1 EIS 107 4.5.5.2 TEM 113 4.5.5.3 XPS 117 4.6 Improved stability and corrosion resistance 129 4.6.1 Microstructure 129 4.6.2 Composition 136 4.6.3 3.5 wt% NaCl 142 4.6.4 0.5 M H2SO4 144 4.6.5 Immersion test 152 Chapter 5 Discussion 157 5.1 The influences of metallurgical defects 157 5.1.1 3.5 wt % NaCl 157 5.1.2 0.5 M H2SO4 158 5.2 Possible electrochemical reactions in 0.5 M H2SO4 160 5.3 The formation of various inclusions 161 5.4 The effects of SO42- and Cl- 162 5.5 The influence of the inclusions 163 5.6 The pickling effect on the passive film 164 Chapter 6 Conclusions 166 Chapter 7 Future work 169 Reference 170" | |
| dc.language.iso | en | |
| dc.subject | 酸洗 | zh_TW |
| dc.subject | 鈍化膜 | zh_TW |
| dc.subject | 陽極極化 | zh_TW |
| dc.subject | 塊材缺陷 | zh_TW |
| dc.subject | 高熵合金 | zh_TW |
| dc.subject | 腐蝕 | zh_TW |
| dc.subject | passive film | en |
| dc.subject | corrosion | en |
| dc.subject | high entropy alloy | en |
| dc.subject | bulk defects | en |
| dc.subject | anodic polarization | en |
| dc.subject | pickling | en |
| dc.title | FeCrNiCoMnx (x = 1 ~ 0)高熵合金工業級塊材顯微結構與腐蝕行為之研究 | zh_TW |
| dc.title | The Microstructure and Corrosion Behavior of FeCrNiCoMnx (x = 1 ~ 0) Industrial Bulk High Entropy Alloys | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡文達(Chin-Kuo Chang),葉宗洸(Hao-Jan Yang),林新智(Yin-Ju Lien),李岳聯,顏鴻威 | |
| dc.subject.keyword | 高熵合金,塊材缺陷,腐蝕,鈍化膜,陽極極化,酸洗, | zh_TW |
| dc.subject.keyword | high entropy alloy,bulk defects,corrosion,passive film,anodic polarization,pickling, | en |
| dc.relation.page | 193 | |
| dc.identifier.doi | 10.6342/NTU202200233 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2701202215013500.pdf | 11.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
