請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李培芬(Pei-Fen Lee) | |
| dc.contributor.author | Huan-An Cheng | en |
| dc.contributor.author | 鄭桓安 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:06:02Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-23T09:06:02Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | 王思懿 (2014)。臺灣陸域保育類哺乳動物的空間分布預測、保護區涵蓋及熱點分析。國立臺灣大學生態學與演化生物學研究所碩士論文,臺北市。 吳海音 (2008)。玉山國家公園東部園區南安至抱崖哺乳動物監測及與人類活動的關係。內政部營建署玉山國家公園管理處,南投縣。 吳海音 (2010)。玉山國家公園東部園區遊客與野生動物活動監測計畫。內政部營建署玉山國家公園管理處,南投縣。 李培芬、廖倩瑜、李玉琪、潘彥宏、傅維馨、陳宣汶 (1997)。臺灣地區生態與環境因子地理資訊資料庫。行政院農業委員會,臺北市。 沈祥仁 (2008)。人類食物對柴山台灣獼猴 (Macaca cyclopis) 取食模式之影響。國立屏東科技大學野生動物保育研究所碩士論文,屏東縣。 房兆屏 (2016)。南投地區石虎的分布與棲地利用。國立嘉義大學森林暨自然資源學系研究所碩士論文,嘉義市。 林良恭、姜博仁、陳美汀、陳家鴻、張燕伶 (2009)。保育類哺乳動物生息現況分析與生態資訊建置。行政院農業委員會林務局,臺北市。 盂燕汝 (2019)。2013-2018年臺灣鼬獾 (Melogale moschata subaurantiaca) 狂犬病疫情的時空變遷趨勢與地景特徵探討。國立臺灣大學生態學與演化生物學研究所碩士論文,臺北市。 胡正恆、郭耀綸 (2016)。白鼻心食果習性、棋盤腳更新與墾丁海岸林保育 (2012-2015)。華岡農科學報,38,69-88。 張偉廷 (2018)。北臺灣食肉目群聚食性變異研究。國立臺灣師範大學生命科學系碩士論文,臺北市。 張逸民 (2021)。臺灣獼猴農害事件影響因子探討。國立臺灣大學生態學與演化生物學研究所碩士論文,臺北市。 陳怡君、王穎 (2001)。玉山國家公園瓦拉米地區訪客數量對山羌之影響。國家公園學報,11(1),86-95。 陳奐臻 (2012)。玉山國家公園八通關古道東段三種食肉目動物的食性研究。國立東華大學自然資源與環境學系研究所碩士論文,花蓮縣。 陳建志 (2003)。玉山國家公園塔塔加地區遊憩環境衝擊之生物因子監測。內政部營建署玉山國家公園管理處,南投縣。 陳美汀 (2015)。台灣淺山地區石虎 (Prionailurus bengalensis) 的空間生態學。國立屏東科技大學生物資源研究所博士論文,屏東縣。 裴家騏 (2007)。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究 (2/3)。行政院農業委員會林務局,臺北市。 裴家騏 (2008)。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究 (3/3)。行政院農業委員會林務局,臺北市。 蔡幸蒨 (2011)。臺灣黑熊 (Ursus thibetanus formosanus) 族群相對豐富度及分布預測模式。國立屏東科技大學野生動物保育研究所碩士論文,屏東縣。 Altendorf, K. B., Laundré, J. W., López González, C. A., Brown, J. S. (2001). Assessing effects of predation risk on foraging behavior of mule deer. Journal of Mammalogy, 82(2), 430–439. Araújo, M. B., New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology Evolution, 22(1), 42–47. Bell, J. F. (1999). Tree-based methods. In A. H. Fielding (Ed.), Machine Learning Methods for Ecological Applications (pp. 89–105). Boston, MA: Springer. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and Regression Trees. Philadelphia, PA: Chapman Hall/CRC. Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, C. D. L., Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241. Cayuela, L., Golicher, D. J., Newton, A. C., Kolb, M., de Alburquerque, F. S., Arets, E. J. M. M., Alkemade, J. R. M., Pérez, A. M. (2009). Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Tropical Conservation Science, 2(3), 319–352. Chiarello, A. G. (1999). Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation, 89(1), 71–82. Chiang, P.-J., Pei, J.-C., Vaughan, M. R., Li, I,-F. (2012). Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zoological Studies, 51(4), 500–511. Chinchor, N. (1992). MUC-4 evaluation metrics. Proceedings of the 4th Conference on Message Understanding - MUC4 ’92. Morristown, NJ: Association for Computational Linguistics. Cornelius, C., Navarrete, S. A., Marquet, P. A. (2001). Effects of human activity on the structure of coastal marine bird assemblages in central Chile. Conservation Biology, 15(5), 1396–1404. Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H., Ceballos, G. (2009). Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences, 106(26), 10702–10705. Di Marco, M., Rondinini, C., Boitani, L., Murray, K. A. (2013). Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biological Conservation, 165, 203–211. Duffy, J. P., Bennie, J., Durán, A. P., Gaston, K. J. (2015). Mammalian ranges are experiencing erosion of natural darkness. Scientific Reports, 5(1), 12042. Elith, J., Kearney, M., Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342. Everaert, G., Boets, P., Lock, K., Džeroski, S., Goethals, P. L. M. (2011). Using classification trees to analyze the impact of exotic species on the ecological assessment of polder lakes in Flanders, Belgium. Ecological Modelling, 222(14), 2202–2212. Forman, R. T. T., Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29(1), 207–231. Freeman, E. A., Moisen, G. G. (2008). A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217(1), 48–58. Frid, A., Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6(1), 11. Graves, V., Tirelli, F., Horn, P., Resende, L., Bolze, G., Dutra, J., Fonseca, C., Pereira, M. J. (2021). Impact of anthropogenic factors on occupancy and abundance of carnivorans in the Austral Atlantic forest. Journal for Nature Conservation, 59(125951). doi: 10.1016/j.jnc.2020.125951 Hernandez, P. A., Graham, C. H., Master, L. L., Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785. Hirzel, A. H., Hausser, J., Chessel, D., Perrin, N. (2002a). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027–2036. Hirzel, A.H., Hausser, J., Perrin, N. (2002b). Biomapper 4. Lausanne, Lab. for Conservation Biology. URL: http://www.unil.ch/biomapper. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence (pp. viii, 183). Ann Arbor, MI: University of Michigan Press. Ibisch, P. L., Hoffmann, M. T., Kreft, S., Pe’er, G., Kati, V., Biber-Freudenberger, L., DellaSala, D. A., Vale, M. M., Hobson, P. R., Selva, N. (2016). A global map of roadless areas and their conservation status. Science, 354(6318), 1423–1427. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. Kent, R., Bar-Massada, A., Carmel, Y. (2011). Multiscale analyses of mammal species composition – environment relationship in the contiguous USA. PLOS ONE, 6(9), e25440. Landis, J. R., Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. Laundré, J. W., Hernández, L., Altendorf, K. B. (2001). Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Canadian Journal of Zoology, 79(8), 1401–1409. Laundre, J. W., Hernandez, L., Ripple, W. J. (2010). The landscape of fear: ecological implications of being afraid. The Open Ecology Journal, 3, 1-7. Leyte-Manrique, A., Abel Antonio, B.-C., Miguel Alejandro, T.-D., Berriozabal-Islas, C., Maciel-Mata, C. A. (2019). A comparison of amphibian and reptile diversity between disturbed and undisturbed environments of Salvatierra, Guanajuato, Mexico. Tropical Conservation Science, 12. doi: 10.1177/1940082919829992 Macedo, L., Salvador, C. H., Moschen, N., Monjeau, A. (2018). Atlantic forest mammals cannot find cellphone coverage. Biological Conservation, 220, 201–208. Martin, J., Basille, M., Van Moorter, B., Kindberg, J., Allainé, D., Swenson, J. E. (2010). Coping with human disturbance: spatial and temporal tactics of the brown bear (Ursus arctos). Canadian Journal of Zoology, 88(9), 875–883. Mendes, C. P., Carreira, D., Pedrosa, F., Beca, G., Lautenschlager, L., Akkawi, P., Bercê, W., Ferraz, K. M. P. M. B., Galetti, M. (2020). Landscape of human fear in Neotropical rainforest mammals. Biological Conservation, 241. Muñoz, M.E.S., Giovanni, R., Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., Canhos, D. A. L., Canhos, V. P. (2011). openModeller: a generic approach to species' potential distribution modelling. GeoInformatica, 15(1), 111–135. Myneni, R. B., Hall, F. G., Sellers, P. J., Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. Olden, J. D., Lawler, J. J., Poff, N. L. (2008). Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology, 83(2), 171–193. Orrock, J. L., Danielson, B. J., Brinkerhoff, R. J. (2004). Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behavioral Ecology, 15(3), 433–437. Pearce, J., Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225–245. Pearson, R. G., Raxworthy, C. J., Nakamura, M., Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. (2011). Scikit-learn: machine learning in python. The Journal of Machine Learning Research, 12(85), 2825–2830. Phillips, S. J., Anderson, R. P., Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. Phillips, S. J., Dudík, M., Schapire, R, E. (2020). Maxent software for modeling species niches and distributions (Version 3.4.3). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Prange, S., Gehrt, S. D., Wiggers, E. P. (2003). Demographic factors contributing to high raccoon densities in urban landscapes. The Journal of Wildlife Management, 67(2), 324–333. Radosavljevic, A., Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. Rode, K. D., Farley, S. D., Robbins, C. T. (2006). Behavioral responses of brown bears mediate nutritional effects of experimentally introduced tourism. Biological Conservation, 133(1), 70–80. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52(10), 891–904. Stockwell, D., Peters, D. (1999). The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13(2), 143–158. Stockwell, D. R. B., Peterson, A. T. (2002). Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148(1), 1–13. Toews, M., Juanes, F., Burton, A. C. (2017). Mammal responses to human footprint vary with spatial extent but not with spatial grain. Ecosphere, 8(3), e01735. Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., Watson, J. E. M. (2016). Global terrestrial human footprint maps for 1993 and 2009. Scientific Data, 3, 160067. Verdolin, J. L. (2006). Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behavioral Ecology and Sociobiology, 60(4), 457–464. Walker, B. G., Boersma, P. D., Wingfield, J. C. (2005). Field endocrinology and conservation biology. Integrative and Comparative Biology, 45(1), 12–18. Wright, D. H. (1990). Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio, 19(4), 189–194. Yen, S.-C., Ju, Y.-T., Shaner, P.-J. L., Chen, H. L. (2019). Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis. Scientific Reports, 9(1), 8161. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79639 | - |
| dc.description.abstract | 人為活動對野生動物的影響為生態保育的重要課題之一,近年有許多國外研究在探討人為活動對野生動物的影響;諸如分析夜晚光照、人類足跡、基地台分布等人為因子,對哺乳動物分布或活動週期的影響。臺灣的相關研究主要是針對特定區域的小尺度分析,較少有對全島的大尺度分析。本研究以臺灣基地台覆蓋範圍作為人為活動的指標,計算基地台密度和其它環境因子的相關性,確認基地台在臺灣能代表人為活動。後續整合1988 - 2020年臺灣13種中大型哺乳動物出現紀錄資料,配合環境因子資料建立各物種的分布預測模式;計算動物紀錄資料、預測資料在基地台覆蓋範圍內的出現的比例,評估各物種對人為活動的耐受程度。分布預測模式的結果進一步建構決策樹模型,以得知影響動物分布的主要環境因子及其決策過程。結果顯示臺灣基地台密度和人口密度的相關性最高,和NDVI相關性最低。臺灣中大型哺乳動物傾向出現於基地台覆蓋範圍外的區域,整體出現比例為 38%,出現區域中有88% 位於海拔1000公尺以下;保育類 (31%) 的出現比例低於一般類 (38%)。單一物種中只有白鼻心及石虎出現比例超過50%,保育類中的黃喉貂、山羊、黑熊、水鹿都低於20%,其餘物種約落在25% - 35% 之間。從各物種決策樹模型的前三層得知,平均海拔、離城市距離、寒季總降雨量及混合林面積4種因子共佔78% 的節點出現次數,為主要影響臺灣中大型哺乳動物出現的環境因子。本研究得知基地台在臺灣能一定程度代表人為活動,並整合臺灣近十幾年的中大型哺乳動物出現紀錄,配合基地台覆蓋範圍及其它多種環境因子,得知大尺度下人為活動對13種哺乳動物分布影響程度。建議可加強臺灣低海拔區域的監測,以應對日後人為活動的擴張。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:06:02Z (GMT). No. of bitstreams: 1 U0001-0702202214222000.pdf: 7532458 bytes, checksum: c0bbdec0091c5b0fc2b33b12726969d7 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 前言 1 材料與方法 5 一、研究範圍 5 二、資料蒐集 5 (一) 動物出現紀錄 5 (二) 基地台資料 6 (三) 環境因子資料 7 三、資料分析 10 (一) 基地台代表性 10 (二) 物種分布預測模式 11 (三) 動物出現比例 16 (四) 網格海拔分布 17 (五) 決策樹模型 17 結果 20 一、基地台代表性 20 二、動物分布現況 20 (一) 動物調查出現紀錄 20 (二) 分布預測模式 20 三、動物出現比例 24 四、網格海拔分布 25 (一) 網格重疊區域 25 (二) 動物分布網格海拔分布 25 五、決策樹模型 26 討論 27 結論 33 參考文獻 34 圖 42 表 75 附錄1 中大型哺乳動物出現資料來源 79 | |
| dc.language.iso | zh-TW | |
| dc.title | 人為活動對臺灣中大型哺乳類空間分布影響評估 | zh_TW |
| dc.title | Impact of human activities on the spatial distribution of medium- and large-sized mammals in Taiwan | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁宗蘇(Shang-Hsieh Hsieh),柯佳吟(Shih-Ping Ho),(Lu-Man Chang),(Hui-Ping Tserng),(Ying Chieh Chan),(Ying Chieh Chan),(Ying Chieh Chan) | |
| dc.subject.keyword | 哺乳動物,人為活動,基地台,物種分布預測模式,決策樹, | zh_TW |
| dc.subject.keyword | mammals,human activities,cell towers,species distribution model,decision tree, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202200328 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0702202214222000.pdf | 7.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
