請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79628完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Szu-Yu Kuo | en |
| dc.contributor.author | 郭思妤 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:05:42Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T09:05:42Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | Abdul Manas, N. H.; Md. Illias, R.; Mahadi, N. M., Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Critical Reviews in Biotechnology 2018, 38, 272-293. Aspeborg, H.; Coutinho, P. M.; Wang, Y.; III, H. B.; Henrissat, B., Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evolutionary Biology 2012, 12, 1-16. Cappellaro, C.; Mrsa, V.; Tanner, W., New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. Journal of Bacteriology 1998, 180, 5030-5037. Cherry, J. M.; Adler, C.; Ball, C.; Chervitz, S. A.; Dwight, S. S.; Hester, E. T.; Jia, Y.; Juvik, G.; Roe, T.; Schroeder, M.; Weng, S.; Botstein, D., SGD: Saccharomyces Genome Database. Nucleic Acids Research 1998, 26, 73-79. Deville, C.; Gharbi, M.; Dandrifosse, G.; Peulen, O., Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. Journal of the Science of Food and Agriculture 2007, 87, 1717-1725. Domon, B.; Costello, C. e., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988, 5, 397-409. Goldman, R. C.; Sullivan, P. A.; Zakula, D.; Capobianco, J. O., Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. European Journal of Biochemistry 1995, 227, 372-378. Henrissat, B.; Callebaut, I.; Lehn, S. F. P.; Mornon, J.-P.; Davies, G., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A 1995, 92, 7090-7094. Hreggviðsson, G. Ó.; Nordberg-Karlsson, E. M.; Tøndervik, A.; Aachmann, F. L.; Dobruchowska, J. M.; Linares-Pastén, J.; Daugbjerg-Christensen, M.; Moneart, A.; Kristjansdottir, T.; Sletta, H.; Fridjonsson, O. H.; Aasen, I. M., Biocatalytic refining of polysaccharides from brown seaweeds. In Sustainable Seaweed Technologies, Elsevier: 2020; pp 447-504. Huang, Y.; Jiang, H.; Mao, X.; Ci, F., Laminarin and Laminarin Oligosaccharides Originating from Brown Algae: Preparation, Biological Activities, and Potential Applications. Journal of Ocean University of China 2021, 20, 641-653. Ibrahim, O. O., Functional oligo-saccharides: chemicals structure, manufacturing, health benefits, applications and regulations. J. Food Chem. Nanotechnol 2018, 4, 65-76. Jiang, B.; Ram, A. F. J.; Sheraton, J.; Klis, F. M.; Bussey, H., Regulation of cell wall β-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Molecular and General Genetics MGG 1995, 248, 260-269. Kadam, S. U.; Tiwari, B. K.; O'Donnell, C. P., Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 2013, 61, 4667-75. Kadam, S. U.; Tiwari, B. K.; O'Donnell, C. P., Extraction, structure and biofunctional activities of laminarin from brown algae. International Journal of Food Science Technology 2015, 50, 24-31. Kang, L.; Zhang, X.; Wang, R.; Liu, C.; Yi, L.; Liu, Z.; Zhang, Z.; Yuan, S., β-Glucosidase BGL1 from Coprinopsis cinerea exhibits a distinctive hydrolysis and transglycosylation activity for application in the production of 3-O-β-d-Gentiobiosyl-D-laminarioligosaccharides. J Agric Food Chem 2019, 67, 10744-10755. Khan, S. H.; O’Neill, R. A., Modern methods in carbohydrate synthesis. In Khan, S. H.; O’Neill, R. A., Eds. CRC Press, 2020. Kim, D. H.; Kim, D. H.; Lee, S. H.; Kim, K. H., A novel β-glucosidase from Saccharophagus degradans 2-40 T for the efficient hydrolysis of laminarin from brown macroalgae. Biotechnology for Biofuels 2018, 11, 64. Koeller, K. M.; Wong, C.-H., Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chemical Reviews 2000, 100, 4465-4494. Krasnova, L.; Wong, C. H., Oligosaccharide synthesis and translational innovation. J Am Chem Soc 2019, 141, 3735-3754. Lesage, G.; Bussey, H., Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2006, 70, 317-43. Li, J.; Cai, C.; Yang, C.; Li, J.; Sun, T.; Yu, G., Recent advances in pharmaceutical potential of brown algal polysaccharides and their derivatives. Curr Pharm Des 2019, 25, 1290-1311. Mutenda, K. E.; Matthiesen, R., Analysis of carbohydrates by mass spectrometry. Mass Spectrometry Data Analysis in Proteomics 2007, 289-301. Pang, Z.; Otaka, K.; Maoka, T.; Hidaka, K.; Ishijima, S.; Oda, M.; Ohnishi, M., Structure of β-glucan oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Bioscience, Biotechnology, and Biochemistry 2005, 69, 553-558. Pereira, L., Porous Graphitic Carbon as a Stationary Phase in HPLC: Theory and Applications. Journal of Liquid Chromatography Related Technologies 2010, 31, 1687-1731. Pineiro, M.; Asp, N.-G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K., FAO Technical meeting on prebiotics. Journal of Clinical Gastroenterology 2008, 42, S156-S159. Plotnikova, T. A.; Selyakh, I. O.; Kalebina, T. S.; Kulaev, I. S., Bgl2p and Gas1p are the major glucan transferases forming the molecular ensemble of yeast cell wall. Dokl Biochem Biophys 2006, 409, 244-247. Qi, C.; Cai, Y.; Gunn, L.; Ding, C.; Li, B.; Kloecker, G.; Qian, K.; Vasilakos, J.; Saijo, S.; Iwakura, Y.; Yannelli, J. R.; Yan, J., Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood, The Journal of the American Society of Hematology 2011, 117, 6825-6836. Roncero, C.; Aldana, C. R. V. d., The Fungal Cell Wall. 2019; Vol. 425. Rosano, G. L.; Ceccarelli, E. A., Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014, 5, 172. Slavin, J., Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013, 5, 1417-1435. Stier, H.; Ebbeskotte, V.; Gruenwald, J., Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal 2014, 13, 1-9. Stubbs, H. J.; Brasch, D. J.; Emerson, G. W.; Sullivan, P. A., Hydrolase and transferase activities of the β-1,3-exoglucanase of Candida albicans. European Journal of Biochemistry 1999, 263, 889-895. Sullivan, P. A.; Emerson, G. W.; Broughton, M. J.; Stubbs, H. J., Candida and candidamycosis. 1991. Sun, S.; Wei, X.; You, C., The construction of an in vitro synthetic enzymatic biosystem that facilitates laminaribiose biosynthesis from maltodextrin and glucose. Biotechnology Journal 2019, 14, 1800493. Suzuki, K.; Yabe, T.; Maruyama, Y.; Abe, K.; Nakajima, T., Characterization of recombinant yeast exo-β-1,3- glucanase (Exg 1p) expressed in Escherichia coli cells. Bioscience, Biotechnology, and Biochemistry 2001, 65, 1310-1314. Teparić, R.; Mrša, V., Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr Genet 2013, 59, 171-85. Wang, D.; Kim, D. H.; Seo, N.; Yun, E. J.; An, H. J.; Kim, J. H.; Kim, K. H., A novel glycoside hydrolase family 5 β-1,3-1,6-endoglucanase from Saccharophagus degradans 2-40T and its transglycosylase activity. Appl Environ Microbiol 2016, 82, 4340-4349. Wang, S.; Xiao, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W., Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods 2020, 66, 103838. West, C.; Elfakir, C.; Lafosse, M., Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 2010, 1217, 3201-16. Zargarzadeh, M.; Amaral, A. J. R.; Custodio, C. A.; Mano, J. F., Biomedical applications of laminarin. Carbohydr Polym 2020, 232, 115774. Zhao, C.; Wu, Y.; Liu, X.; Liu, B.; Cao, H.; Yu, H.; Sarker, S. D.; Nahar, L.; Xiao, J., Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends in Food Science Technology 2017, 66, 135-145. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79628 | - |
| dc.description.abstract | "轉醣是醣基水解酶 (glycosyl hydrolase, GH) 的功能之一,它可以透過將醣基從受質供體 (substrate donor) 轉移到目標受體 (acceptor donor) 來形成新的醣苷鍵。用此方式可以合成複雜或新型的寡醣,也可能是滿足當今市場對功能性寡醣的高度需求的一種替代生產方法。先前研究發現酵母菌 Saccharomyces cerevisiae中的 EXG1蛋白 (ScEXG1) 具有轉醣而合成昆布寡醣的能力。但對於ScEXG1產生的寡醣結構組成或產量相關資訊仍有許多未知。因此,我們將進一步的了解在不同反應時間、受質濃度、酵素濃度條件下,ScEXG1 in vitro合成昆布寡醣的能力,以及其產物的結構表徵。在我們的研究中以Laminaribiose為受質,利用ScEXG1 新合成了三種不同的寡糖 (DP3、DP4-1、DP4-2),其中最主要的寡醣 DP3鑑定為β-Glc-(1 → 6)-β-Glc-(1→ 3)-β-Glc。另外,當使用不同的酵素濃度時,原始受質和新合成的寡醣水解成葡萄糖的速率會有所不同。在固定的酵素濃度下,所有測試的Laminaribiose受質濃度 (4.38 – 32.85 mM) 都可以合成 DP3、DP4-1 和 DP4-2。但在 4.38 mM, 75 min 和 21.9 mM, 180 min下,分別合成了最低 (12.24 ± 0.18 µg/mL, p < 0.05) 和最高 (136.55 ± 5.21 µg/mL, p < 0.05) 的DP3。DP4-1 和 DP4-2 的含量均低於定量極限。為了提高ScEXG1合成能力仍需要進一步研究如何降低 ScEXG1 的水解活性,同時提高合成能力,以便能夠充分利用其酵素進行大規模寡醣合成。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:05:42Z (GMT). No. of bitstreams: 1 U0001-0702202215163400.pdf: 20772126 bytes, checksum: 19e23ac55beea7487e33fd6bfa6b7bf4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgments.........................................................................................................................................i 摘要..............................................................................................................................................................iii Abstract.......................................................................................................................................................iv Table of Contents........................................................................................................................................vi List of Figures...........................................................................................................................................ix List of Tables............................................................................................................................................xi Supplementary........................................................................................................................................xii CHAPTER ONE INTRODUCTION.................................................................................................................1 CHAPTER TWO LITERATURE REVIEW.........................................................................................................2 2.1 Functional oligosaccharides.............................................................................................................2 2.2 Brown algae (Phaeophyta)................................................................................................................3 2.3 Laminari-oligosaccharides................................................................................................................7 2.3.1 Origin and natural source(s).......................................................................................................7 2.3.2 Health benefits of laminarin and its oligosaccharide.................................................................11 2.3.3 Laminari-oligosaccharides synthesis........................................................................................12 2.4 Glycosyl hydrolase family 5 (GH5).................................................................................................15 2.4.1 GH5 family protein structure.....................................................................................................15 2.4.2 Catalytic mechanism.................................................................................................................15 2.5 Saccharomyces cerevisiae BY4741.................................................................................................18 2.5.1 S. cerevisiae cell wall.................................................................................................................18 2.5.2 S. cerevisiae EXG1 (ScEXG1).....................................................................................................21 2.6 Analysis of carbohydrates by High-Performance Liquid Chromatography Porous Graphitic Carbon coupled with Tandem Mass Spectrometry (HPLC-PGC-ESI-MS/MS)...........................................23 2.6.1 Porous graphitic carbon (PGC)................................................................................................26 CHAPTER THREE RESEARCH OBJECTIVES AND EXPERIMENTAL DESIGN.............................................29 CHAPTER FOUR MATERIALS AND METHODS.........................................................................................31 4.1 Materials..........................................................................................................................................31 4.1.1 Chemicals..................................................................................................................................31 4.1.2 Reagents and Kits.....................................................................................................................33 4.1.3 Biological medium.....................................................................................................................33 4.1.4 Enzymes....................................................................................................................................34 4.1.5 Equipment.................................................................................................................................34 4.1.5.1 Consumables........................................................................................................................34 4.1.5.2 Instrumentation....................................................................................................................35 4.2 Methods.........................................................................................................................................37 4.2.1 Recombinant pET21a-ScEXG1-6HIS protein............................................................................37 4.2.2 YCL1497 (BY4741 exg1::pGPD-pEXG1-ScEXG1-tCYC1 las21) for ScEXG1 expression......41 4.2.3 SDS-PAGE................................................................................................................................42 4.2.4 Immunoblotting........................................................................................................................42 4.2.5 Determination of protein concentration...................................................................................43 4.2.6 Enzyme activity........................................................................................................................43 4.2.7 Enzymatic transglycosylation assay........................................................................................43 4.2.8 Thin layer chromatography (TLC)............................................................................................44 4.2.9 Porous graphitic carbon solid phase extraction (PGC-SPE) sample purification....................44 4.2.10 Structural identification with HPLC-PGC-ESI-MS/MS analysis...............................................45 4.2.11 Calibration curve.....................................................................................................................48 CHAPTER FIVE RESULTS AND DISCUSSION..........................................................................................49 5.1 Recombinant pET21a-ScEXG1-6HIS plasmid construction and heterologous protein expression in E. coli........................................................................................................................................................49 5.1.1 Plasmid construction...............................................................................................................49 5.1.2 Heterologous protein expression of ScEXG1 in E. coli BL21....................................................49 5.1.3 Codon optimized pET21a-ScEXG1-6HIS expression...............................................................50 5.2 YCL1497 (BY4741 exg1::pGPD-pEXG1-ScEXG1-tCYC1 las21) expressing ScEXG1................52 5.2.1 Protein purification with Ni-NTA affinity column......................................................................52 5.3 Enzymatic transglycosylation with purified ScEXG1......................................................................55 5.3.1 Qualitative analysis of ScEXG1 transglycosylation – Time optimization...................................55 5.3.2 Enzyme amount optimization for the transglycosylation of ScEXG1........................................62 5.3.3 Enzyme/substrate ratio optimization........................................................................................65 5.4 Analytical platform set-up..............................................................................................................72 5.4.1 Analytical recoveries of different oligosaccharides (DP2 – 4)..................................................72 5.5 Quantitative analysis of ScEXG1 transglycosylation product..........................................................76 5.5.1 Quantification of the synthesized DP3 and DP4s with ScEXG1................................................78 5.5.2 Glucose content as a side-product from the transglycosylation reactions of ScEXG1............82 5.6 TLC analysis of the ScEXG1 transglycosylation under different laminaribiose concentrations and reaction times............................................................................................................................................85 5.7 Structural characterization of the transglycosylation products of ScEXG1...................................87 5.7.1 DP3...........................................................................................................................................87 5.7.2 DP4-1........................................................................................................................................90 5.7.3 DP4-2........................................................................................................................................93 CHAPTER SIX CONCLUSIONS AND FUTURE PERSPECTIVES...............................................................102 CHAPTER SEVEN REFERENCES.............................................................................................................105 CHAPTER EIGHT SUPPLEMENTARY.......................................................................................................108 | |
| dc.language.iso | en | |
| dc.title | 探討酵母菌中 EXG1 轉醣合成昆布寡醣 | zh_TW |
| dc.title | Enzymatic transglycosylation of Saccharomyces cerevisiae EXG1 to synthesize laminarin-derived oligosaccharides | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋(Fan-Ren Chang),陳勁初(Dah-Jing Jwo),陳冠翰(He-Sheng Wang) | |
| dc.subject.keyword | 轉醣,醣基水解酶 (glycosyl hydrolase, GH),Saccharomyces cerevisiae EXG1,昆布寡醣,結構表徵, | zh_TW |
| dc.subject.keyword | Transglycosylation,glycosyl hydrolases (GHs),Saccharomyces cerevisiae EXG1,laminari-oligosaccharide,structural characterization, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202200331 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0702202215163400.pdf | 20.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
