請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Kuan-Yu Lin | en |
| dc.contributor.author | 林冠宇 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:01:54Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T09:01:54Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-09 | |
| dc.identifier.citation | AlSahow, A., et al. (2021). 'Kt/V: achievement, predictors and relationship to mortality in hemodialysis patients in the Gulf Cooperation Council countries: results from DOPPS (2012–18)'. Clinical kidney journal, 14(3), 820-830. Beberashvili, I., et al. (2016). 'Longitudinal study of serum uric acid, nutritional status, and mortality in maintenance hemodialysis patients'. Clinical Journal of the American Society of Nephrology, 11(6), 1015-1023. Chanda, S., et al. (2019). 'Support vector machine regression on selected wavelength regions for quantitative analysis of caffeine in tea leaves by near infrared spectroscopy'. Journal of Chemometrics, 33(10), e3172. Chang, C.-J., et al. (2012). High performance Surface Enhanced Raman Scattering optical monitoring in hemodialysis system for quantative analysis. SENSORS, 2012 IEEE. Cheng, H.-T., et al. (2021). 'Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015'. Diabetes Care, 44(1), 89-97. Daugirdas, J. T., et al. (2010). 'Automated monitoring of hemodialysis adequacy by dialysis machines: potential benefits to patients and cost savings'. Kidney international, 78(9), 833-835. Dewi, N. M. A. R., et al. (2015). 'Effect of dialyzer reuse upon urea reduction ratio (urr), kt/v urea and serum albumin in regular hemodialysis patient'. Indonesian Journal of Pharmacy, 25(3), 166. Dimeski, G., et al. (2010). 'Ion selective electrodes (ISEs) and interferences—a review'. Clinica Chimica Acta, 411(5-6), 309-317. Fridolin, I., et al. (2002). 'On-line monitoring of solutes in dialysate using absorption of ultraviolet radiation: technique description'. The International Journal of Artificial Organs, 25(8), 748-761. Gebregeorgis, W., et al. (2018). 'Correlation between Dt/V derived from ionic dialysance and blood-driven Kt/V of urea in African-American hemodialysis patients, based on body weight and ultrafiltration volume'. Clinical kidney journal, 11(5), 734-741. Gyftokostas, N., et al. (2021). 'Classification of Greek Olive Oils from Different Regions by Machine Learning-Aided Laser-Induced Breakdown Spectroscopy and Absorption Spectroscopy'. Molecules, 26(5), 1241. Hanssen, B. L., et al. (2016). 'Recent strategies to minimise fouling in electrochemical detection systems'. Reviews in Analytical Chemistry, 35(1), 1-28. Henn, R., et al. (2018). 'Hemodialysis monitoring using mid‐and near‐infrared spectroscopy with partial least squares regression'. Journal of biophotonics, 11(7), e201700365. Iseki, K., et al. (1997). 'Risk factors of end-stage renal disease and serum creatinine in a community-based mass screening'. Kidney international, 51(3), 850-854. Kanda, E., et al. (2021). 'Beta-2 microglobulin and all-cause mortality in the era of high-flux hemodialysis: results from the Dialysis Outcomes and Practice Patterns Study'. Clinical kidney journal, 14(5), 1436-1442. Kang, D.-H., et al. (2002). 'A role for uric acid in the progression of renal disease'. Journal of the American Society of Nephrology, 13(12), 2888-2897. Kim, H. W., et al. (2021). 'Dialysis Adequacy and Risk of Dementia in Elderly Hemodialysis Patients'. Frontiers in Medicine, 8. Kim, K., et al. (2011). 'Higher serum beta2-microglobulin levels are associated with better survival in chronic hemodialysis patients: a reverse epidemiology'. Clinical nephrology, 75(5), 458-465. Kolluru, S., et al. (2021). 'A machine learning approach for deriving spectral absorption coefficients of optically active oceanic constituents'. Computers Geosciences, 155, 104879. Konoplev, G., et al. (2019). Three-wavelength optoelectronic system for hemodialysis monitoring. Journal of Physics: Conference Series. Kuhlmann, U., et al. (2001). 'Accuracy and safety of online clearance monitoring based on conductivity variation'. Nephrology Dialysis Transplantation, 16(5), 1053-1058. Latif, W., et al. (2011). 'Uric acid levels and all-cause and cardiovascular mortality in the hemodialysis population'. Clinical Journal of the American Society of Nephrology, 6(10), 2470-2477. Lesani, A., et al. (2020). 'Quantification of human sperm concentration using machine learning-based spectrophotometry'. Computers in Biology and Medicine, 127, 104061. Levey, A. S., et al. (2012). 'Chronic kidney disease'. The lancet, 379(9811), 165-180. Liu, W., et al. (2019). 'Predictive model for water absorption in sublayers using a machine learning method'. Journal of Petroleum Science and Engineering, 182, 106367. Marchenko, S., et al. (2015). 'Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate'. Sensors and Actuators B: Chemical, 207, 981-986. Michalec, M., et al. (2016). 'Optoelectronic detectors and flow analysis systems for determination of dialysate urea nitrogen'. Sensors and Actuators B: Chemical, 226, 563-569. Nenadović, M., et al. (2021). 'Beta-2 microglobulin removal with postdilution online hemodiafiltration-comparison of three different dialysis membranes'. Srpski arhiv za celokupno lekarstvo(00), 48-48. Oshina, I., et al. (2021). 'Beer–Lambert law for optical tissue diagnostics: current state of the art and the main limitations'. Journal of Biomedical Optics, 26(10), 100901. Paats, J., et al. (2021). 'Optical Method and Biochemical Source for the Assessment of the Middle-Molecule Uremic Toxin β2-Microglobulin in Spent Dialysate'. Toxins, 13(4), 255. Pijanowska, D. G., et al. (1997). 'pH-ISFET based urea biosensor'. Sensors and Actuators B: Chemical, 44(1-3), 370-376. Pookaiyaudom, P., et al. (2011). 'Measurement of urea, creatinine and urea to creatinine ratio using enzyme based chemical current conveyor (CCCII+)'. Sensors and Actuators B: Chemical, 153(2), 453-459. Prasad, N., et al. (2015). 'Hemodialysis in asia'. Kidney Diseases, 1(3), 165-177. Rebholz, C. M., et al. (2017). 'Risk of ESRD and mortality associated with change in filtration markers'. American Journal of Kidney Diseases, 70(4), 551-560. Roumelioti, M.-E., et al. (2018). 'Beta-2 microglobulin clearance in high-flux dialysis and convective dialysis modalities: a meta-analysis of published studies'. Nephrology Dialysis Transplantation, 33(6), 1025-1039. Saba, G. K., et al. (2019). 'The development and validation of a profiling glider deep ISFET-based pH sensor for high resolution observations of coastal and ocean acidification'. Frontiers in Marine Science, 6, 664. Sant, W., et al. (2003). 'Development of chemical field effect transistors for the detection of urea'. Sensors and Actuators B: Chemical, 95(1-3), 309-314. Sant, W., et al. (2011). 'On-line monitoring of urea using enzymatic field effect transistors'. Sensors and Actuators B: Chemical, 160(1), 59-64. Sharma, M. K., et al. (2016). 'On-line monitoring of electrolytes in hemodialysis: on the road towards individualizing treatment'. Expert review of medical devices, 13(10), 933-943. Skoog, D. A., et al. (2013). Fundamentals of analytical chemistry. In (9 ed., pp. 673). Cengage learning. Stepanova, O., et al. (2020). 'Analysis of Solute Kinetics During Hemodialysis Treatment by Measuring the UV Absorption of Effluent Dialysate at Different Wavelengths'. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Umimoto, K., et al. (2009).'Measuring of uremic substances in dialysate by visible ultraviolet spectroscopy'. World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany. Vasilevsky, A., et al. (2015). 'Dual-wavelength optoelectronic sensor for monitoring uric acid concentration in dialysate'. Biomedical Engineering, 49(3), 125-128. Yuan, Y., et al. (2021). 'Oil-Membrane Protection of Electrochemical Sensors for Fouling-and pH-Insensitive Detection of Lipophilic Analytes'. ACS Applied Materials Interfaces, 13(45), 53553-53563. Zhang, Z., et al. (2018). 'Machine learning predictive framework for CO2 thermodynamic properties in solution'. Journal of CO2 Utilization, 26, 152-159. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79496 | - |
| dc.description.abstract | 我們開發一種用於線上測量血液透析、即時得知透析廢液(spent dialysate)中尿酸和β2-微球蛋白濃度的光電系統。此光電系統是由兩組紫外光波段的發光二極體、流通槽和光感測二極體組成;一組用於在波長為278 nm波峰測量尿酸的吸收光度(absorbance),而另一組用於在波長為315 nm波峰測量β2-微球蛋白的吸收光度。量測血液透析時流過流通槽透析廢液的吸光值。在流通槽上,我們使用圓柱形的設計來減少全內折射並減少迷光(strait light)進入光感測器,以獲得更好的線性度和最小的比爾定律偏差。該系統首先使用標準溶液解進行校準,並安裝至商用的血液透析機,來量測臨床研究中六名患者的10次血液透析療程的分子濃度變化。除了證明使用我們的光電系統可以量測出透析廢液中尿酸和β2-微球蛋白的濃度外,將量測結果配合支持向量機回歸(SVM regression)法,我們可以預測患者血清中的尿酸與β2-微球蛋白濃度,其中尿酸有R2 = 0.8482,β2-微球蛋白有 R2 = 0.7208的極佳相關性。這些成果展示了我們的系統具有線上監測血液透析的巨大潛力。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:01:54Z (GMT). No. of bitstreams: 1 U0001-0802202213173400.pdf: 2955431 bytes, checksum: 0ad65d70ee809994fa036dcb2455c73f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 iii Abstract iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Hemodialysis 1 1.2 Ion sensitive field effect transistors (ISFETs) and electrochemical sensors 2 1.3 Optoelectronic sensor 2 Chapter 2 Literature Review 4 2.1 Ionic measurement 4 2.1.1 Conductivity measurement 4 2.1.2 Electromotive force measurement 5 2.2 Measurement of Molecule Concentrations using Optical Means 6 2.2.1 Scattering 6 2.2.2 Absorption 8 2.2.2.1 Infrared (IR) light 8 2.2.2.2 Ultraviolet (UV) light 10 2.3 Ion sensitive field effect transistors (ISFETs) and electrochemical sensors 14 2.4 Optoelectronic sensor 16 Chapter 3 Materials and Methods 20 3.1 Optoelectronic system 20 3.1.1 Light source module 21 3.1.2 Flow cell module 21 3.1.3 Signal processing module 22 3.2 Standard sample calibration 22 3.3 Experimental setup 23 3.4 Measurement in clinical trials 24 3.4.1 Sampling protocol in biochemical analysis 25 3.4.2 Sampling protocol in absorbance measurement 26 3.5 Data analysis and prediction models 27 3.5.1 Linear regression approach 28 3.5.2 Support vector machine (SVM) regression approach 28 Chapter 4 Results and Discussions 30 4.1 Optical design 30 4.1.1 Flow cell shape optimization 30 4.1.2 Optical path design 35 4.2 Calibration on spent dialysate 39 4.3 Online monitoring on spent dialysate during HD 39 4.4 Quantitative analysis and prediction model 41 4.4.1 Linear regression 41 4.4.2 SVM regression 42 4.5 The cleaning rate analysis 43 4.6 Optical design 44 4.7 HD monitoring 45 4.8 Molecular concentration assays in blood 46 4.9 Molecules removal 46 Chapter 5 Conclusion 46 References 47 Appendix A Code of SVM regression 55 | |
| dc.language.iso | en | |
| dc.title | 光學線上監測系統用於血液透析與資料分析 | zh_TW |
| dc.title | Optical online monitoring system for hemodialysis and data analysis | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-8864-9722 | |
| dc.contributor.oralexamcommittee | 林水龍(Nai-Hwa Lien),徐振哲(Chien-Wei Chen),張智星(Chung-Chiang Hsiao) | |
| dc.subject.keyword | 線上監測,吸收光譜學,比爾定律,定量分析,機器學習, | zh_TW |
| dc.subject.keyword | online monitoring,absorbance/transmittance,Beer's Law,quantitative analysis,machine learning, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202200371 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202213173400.pdf | 2.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
