請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Liang-Cheng Chen | en |
| dc.contributor.author | 陳亮誠 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:59:56Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-23T08:59:56Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-24 | |
| dc.identifier.citation | [1] 蕭佑和.只要九張圖,看懂什麼是5G. Available: https://dahetalk.com/2019/03/01/%e3%80%905g%e7%a7%91%e6%99%ae%e3%80%91%e5%8f%aa%e8%a6%819%e5%bc%b5%e5%9c%96%ef%bc%8c%e7%9c%8b%e6%87%82%e4%bb%80%e9%ba%bc%e6%98%af5g%ef%bd%9c%e5%a4%a7%e5%92%8c%e6%9c%89%e8%a9%b1%e8%aa%aa/ [2] D. J. 解析通訊技術:3G、4G、5G背後的科學意義(上). Available: http://technews.tw/2015/10/06/3g%E3%80%814g%E3%80%815g-meaning/ [3] 吳鋼. 淺談4G. Available: http://yuweneve.pixnet.net/blog/post/43617168-%E3%80%90%E8%AD%B0%E9%A1%8C%E3%80%91%E6%B7%BA%E8%AB%874g [4] R. V. L. Hartley, 'Transmission of information,' in The Bell System Technical Journal, vol. 7, no. 3, pp. 535-563, July 1928. [5] 紀鈞翔. 5G行動通訊之毫米波相位陣列天線系統. Available: https://ictjournal.itri.org.tw/Content/Messagess/contents.aspx? MmmID=654304432061644411 CatID=654313611231473607 MSID=654516526542211241 [6] Zero圈圈.什麼是5G?5G頻段Sub-6、mmWAVE毫米波差異與優勢介紹. Available: https://www.cool3c.com/article/152100 [7] D. Kholodnyak, E. Serebryakova, I.vendik and O. Vendik, 'Broadband digital phase shifter based on switchable right- and left-handed transmission line sections,' IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 258-260, May 2006. [8] C. Zhou, H. Qian, and Z. Yu, 'A lumped elements varactor-loaded transmission-line phase shifter at 60GHz 'IEEE Int. Solid-State Circuits Conference Digest of Technical, no. 2010, pp. 656-658, Nov. 2010. [9] F. Ellinger, R. Vogt, and W. Bachtold, 'Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,' IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, Apr. 2002. [10] H. Zarei, C. T. Charles, and D. J. Allstot, 'Reflective-type phase shifters for multiple-antenna transceivers,' IEEE Trans. Circuits and System, vol. 54, no. 8, pp. 1647-1656, Aug. 2007. [11] H. Zarei and D. J. Allstot, 'A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,' IEEE Int. Solid-State Circuits Conference Digest of Technical, pp. 392-534 Vol.1, Feb. 2004. [12] L. Y. Huang, Y. T. Lin, and C. N. Kuo, 'A 38 GHz low-loss reflection-type phase shifter,'2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 54-56, Jan. 2017. [13] W. T. Li, Y. C. Chiang, J. H. Tsai, H. Y. Yang, J. H. Cheng, and T. W. Huang, '60-GHz 5-bit phase shifter with integrated VGA phase-error compensation,' IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, Mar. 2013. [14] D. W. Kang, H. D. Lee, C. H. Kim, and S. Hong, 'Ku-band MMIC phase shifter using a parallel resonator with 0.18um CMOS technology,' IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294-301, Jan. 2006. [15] J. H. Tsai, C. K. Liu, and J. Y. Lin, 'A 12 GHz 6-bit switch-type phase shifter MMIC,' 2014 44th European Microwave Conference, pp. 1916-1919, Oct. 2014. [16] T. Yu and G. M. Rebeiz, 'A 24 GHz 6-bit CMOS phased-array receiver,' IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 422-424, June 2008. [17] T. Yu and G. M. Rebeiz, 'A 22~24 GHz 4-element CMOS phased array with on-chip coupling characterization,' IEEE J. Solid-State Circuits vol. 43, no. 9, pp. 2134-2143, Sep. 2008. [18] I. S. Song, J. G. Lee, G. Yoon, and C. S. Park, 'A low power LNA-phase shifter with vector sum method for 60 GHz beamforming receiver,' IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 612-614, July 2015. [19] K. J. Koh and G. M. Rebeiz, '0.13-um CMOS phase shifters for X-, Ku, and K-band phased arrays,' IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Oct. 2007. [20] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, 'CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band,' IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1778-1786, July 2011. [21] B. Gilbert, 'Plenary Speaker 2: Microwave technologies: The first century,' 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 6-6, June 2013. [22] S. Afroz and Kwang-Jin Koh, '94 GHz bidirectional variable gain amplifier in 0.13-µm SiGe BiCMOS for phased array transmit and receive applications,' 2015 IEEE MTT-S International Microwave Symposium, pp. 1-3, May 2015. [23] V. Crnadak and S. Tasić, 'VHF quadrature hybrid coupler,' 2015 23rd Telecommunications Forum Telfor (TELFOR), pp. 595-598, Jan. 2015, doi: 10.1109/TELFOR.2015.7377538. [24] J. H. Cloete, 'Exact design of the marchand balun,' 1979 9th European Microwave Conference, pp. 480-484, Sep. 1979. [25] Pen-Jui Peng, “Design of phase shifter for microwave and millimeter-wave applications,” Graduate Institute of Communication Engineering, Master Thesis, National Taiwan University, June 2010. [26] P. Lo, C. Lin, H. Kuo and H. Chuang, 'A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity,' 2012 9th European Radar Conference, pp. 532-535, Oct. 2012. [27] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, 'Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,' IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009, doi: 10.1109/TMTT.2009.2025415. [28] Y. Yi, D. Zhao and X. You, 'A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,' 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, Aug. 2018, doi: 10.1109/RFIC.2018.8428833. [29] L. Wang and C. E. Saavedra, '28–31 GHz bi-directional amplifier for 5G wireless repeaters,' 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1-4, Oct. 2017. [30] B. Suh, D. Kim and B. Min, 'A 7-GHz CMOS bidirectional variable gain amplifier with low gain and phase imbalances,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2669-2678, Sep. 2018. [31] B. Razavi, RF Microelectronics, Second ed. Paul Boger, 2011. [32] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, 'A 38 GHz low power variable gain LNA using PMOS current-steering device and G m-boost technique,' 2018 Asia-Pacific Microwave Conference (APMC), pp. 654-656 ,Nov. 2018. [33] Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, 'A 28-GHz low-power vector-sum phase shifter using biphase modulator and current reused technique,' IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018, doi: 10.1109/LMWC.2018.2873086. [34] S. Rehnmark, 'Meander-folded coupled lines,' IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 4, pp. 225-230, Apr. 1978. [35] M. Chongcheawchamnan, S. Bunnjaweht, D. Kpogla, D. Lee, and I. D. Robertson, 'Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics,' IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 6, pp. 1642-1646, June 2002. [36] G. Shin, Jae. Kim and Hyun Oh, 'Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G Applications,' IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016, doi: 10.1109/LMWC.2015.2505624. [37] Y. Gong, M. Cho and J. D. Cressler, 'A bi-directional, X-band 6-bit phase shifter for phased array antennas using an active DPDT switch,' 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 288-291, July 2017. [38] F. Akbar and A. Mortazawi, 'A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1427-1431, Dec. 2017. [39] J. Pang et al., 'A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR,' IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2371-2386, Sep. 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79413 | - |
| dc.description.abstract | "本論文提出一操作於Ka頻帶之雙向向量合成式相移器(bi-directional vector sum phase shifter, BDVSPS),可用於相位陣列的架構來實現收發端的射頻電路。 本論文可以分成主動和被動部分,為了實現雙向架構,其中四相位產生器是由90度耦合器和0-π相位切換器來實現的,而且被動的四相位產生器本身亦可實現雙向功能。為了補償被動元件的損耗和精準地控制相位,本文採用兩個雙向可變增益放大器來實現,分別調整雙向放大器的偏壓來控制增益,再由功率合成器合成相位。反向操作時,訊號由功率整合器端進入,經由雙向可變增益放大器的反向路徑放大後,再用90°耦合器輸出,以此實現雙向向量合式相移器。 本文採用台積電0.18 μm CMOS製程實現,可達到等效4位元解析度,而量測結果均方根增益誤差為0.4 dB,RMS相位誤差小於0.4°,平均增益為-7.6 dB,直流功耗最大為20 mW。 關鍵字:相移器、向量合成式相移器、Ka頻帶、雙向可變增益放大器。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:59:56Z (GMT). No. of bitstreams: 1 U0001-1910202114234200.pdf: 14379637 bytes, checksum: d834555495c4b48fa8866a13c725d140 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | " Chapter 1 簡介 1 1.1 研究動機與背景 1 1.2 文獻回顧 5 1.3 各章節重點介紹 9 Chapter 2 相移器電路介紹 11 2.1 簡介 11 2.2 相移器設計重要參數 11 2.2.1 相位差(phase difference) 11 2.2.2 插入損耗、振幅誤差 (insertion loss, amplitude error) 11 2.2.3 RMS相位差(RMS phase error) 12 2.2.4 RMS振幅誤差(RMS amplitude error) 12 2.3 相移器電路簡介 12 2.3.1 被動式相移器 12 2.3.2 主動式相移器 27 Chapter 3 雙向可變增益放大器 29 3.1 電路回顧 29 3.1.1 低相位變化可變增益放大器 29 3.1.2 數位控制可變增益放大器 30 3.1.3 循環放大器(quasi-circulator amplifier) 30 3.1.4 旋轉切換式雙向放大器 31 3.1.5 雙向可變增益疊接放大器 32 3.1.6 電流導向可變增益放大器 33 3.2 本論文雙向放大器電路介紹 37 3.3 設計過程 40 3.3.1 設計流程 40 3.3.2 電晶體尺寸設計 41 3.3.3 匹配過程 44 3.3.4 佈局方式 50 3.4 雙向放大器整體模擬 53 Chapter 4 主動雙向向量合成相移器電路設計 56 4.1 電路介紹 56 4.2 設計流程 60 4.3 被動部分電路 61 4.3.1 正交耦合器設計 62 4.3.2 PIVA設計及模擬 64 4.3.3 功率分配器的設計及模擬 72 4.4 相移器整體模擬 76 4.5 電路佈局 92 Chapter 5 電路量測 93 5.1 量測準備及架設 93 5.1.1 印刷電路板設計 93 5.1.2 偏壓使用 96 5.1.3 量測環境 96 5.2 量測結果 98 5.2.1 雙向可變增益放大器 98 5.2.2 雙向向量合式相移器 104 5.3 問題與討論 124 5.3.1 雙向放大器增益誤差 124 5.4 特性比較 129 Chapter 6 結論 131 參考文獻 132" | |
| dc.language.iso | zh-TW | |
| dc.title | 使用雙向可變增益放大器實現Ka頻段主動式雙向向量合成相移器 | zh_TW |
| dc.title | A Ka Band Bi-directional Active Vector-Sum Phase Shifter Using Bi-directional Variable Gain Amplifier | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政翰(Hsin-Tsai Liu),楊濠瞬(Chih-Yang Tseng),張譽騰 | |
| dc.subject.keyword | 相移器,向量合成式相移器,Ka頻帶,雙向可變增益放大器, | zh_TW |
| dc.subject.keyword | phase shifter,vecter sum phase shifter,Ka band,bidirectional variable gain amplifier (BDVGA), | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU202103874 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1910202114234200.pdf | 14.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
