Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝淑貞(Shu-Chen Hsieh)
dc.contributor.authorTing-Yu Chaoen
dc.contributor.author趙庭郁zh_TW
dc.date.accessioned2022-11-23T08:58:32Z-
dc.date.available2024-01-01
dc.date.available2022-11-23T08:58:32Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation(1) Copenhagen Consensus Conference. Consensus Development Conference: Prophylaxis and Treatment of Osteoporosis; Elsevier, 1991; Vol. 90. https://doi.org/10.1016/0002-9343(91)90512-V. (2) World Health Organization. Guidelines for Preclinical Evaluation and Clinical Trials in Osteoporosis World Health Organization; World Health Organization: Geneva, 1998. (3) Tsai, K.-S.; Yang, R.-S.; Wu, C.-H.; Hwang, J.-S.; Cheng, T.-T.; Sun, Z.-J. Taiwanese Guidelines for the Prevention and Treatment of Osteoporosis. Taiwan. Osteoporos. Assoc. 2012, 1–25. (4) Kanis, J. A. Diagnosis of Osteoporosis and Assessment of Fracture Risk. Lancet 2002, 359 (9321), 1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5. (5) Vasikaran, S.; Glendenning, P.; Morris, H. A. The Role of Biochemical Markers of Bone Turnover in Osteoporosis Management in Clinical Practice. Clin. Biochem. Rev. 2006, 27 (3), 119–121. (6) Ballane, G.; Cauley, J. A.; Luckey, M. M.; El-Hajj Fuleihan, G. Worldwide Prevalence and Incidence of Osteoporotic Vertebral Fractures. Osteoporos. Int. 2017, 28 (5), 1531–1542. https://doi.org/10.1007/s00198-017-3909-3. (7) Hwang, J.-S.; Chan, D.-C.; Chen, J.-F.; Cheng, T.-T.; Wu, C.-H.; Soong, Y.-K.; Tsai, K.-S.; Yang, R.-S. Clinical Practice Guidelines for the Prevention and Treatment of Osteoporosis in Taiwan: Summary. J. Bone Miner. Metab. 2014, 32 (1), 10–16. https://doi.org/10.1007/s00774-013-0495-0. (8) Hwang, J.-S.; Chen, J.-F.; Tsai, K.-S. Epidemiology of Osteoporosis in Taiwan. In Osteoporosis of the Spine; 2021; 3–10. (9) Chen, F.-P.; Huang, T.-S.; Fu, T.-S.; Sun, C.-C.; Chao, A.-S.; Tsai, T.-L. Secular Trends in Incidence of Osteoporosis in Taiwan: A Nationwide Population-Based Study. Biomed. J. 2018, 41 (5), 314–320. https://doi.org/10.1016/j.bj.2018.08.001. (10) Wu, T. Y.; Hu, H. Y.; Lin, S. Y.; Chie, W. C.; Yang, R. S.; Liaw, C. K. Trends in Hip Fracture Rates in Taiwan: A Nationwide Study from 1996 to 2010. Osteoporos. Int. 2017, 28 (2), 653–665. https://doi.org/10.1007/s00198-016-3783-4. (11) Kanis, J. A.; Johnell, O.; DeLaet, C.; Johansson, H.; Oden, A.; Delmas, P.; Eisman, J.; Fujiwara, S.; Garnero, P.; Kroger, H.; McCloskey, E.V; Mellstrom, D.; Melton, L. J.; Pols, H.; Reeve, J.; Silman, A.; Tenenhouse, A. A Meta-Analysis of Previous Fracture and Subsequent Fracture Risk. Bone 2004, 35 (2), 375–382. https://doi.org/10.1016/j.bone.2004.03.024. (12) Wang, C.-Y.; Fu, S.-H.; Yang, R.-S.; Shen, L.-J.; Wu, F.-L. L.; Hsiao, F.-Y. Age- and Gender-Specific Epidemiology, Treatment Patterns, and Economic Burden of Osteoporosis and Associated Fracture in Taiwan between 2009 and 2013. Arch. Osteoporos. 2017, 12 (1), 92. https://doi.org/10.1007/s11657-017-0385-5. (13) Guntur, A. R.; Rosen, C. J. Bone as an Endocrine Organ. Endocr. Pract. 2012, 18 (5), 758–762. https://doi.org/10.4158/EP12141.RA. (14) Wei, J.; Karsenty, G. An Overview of the Metabolic Functions of Osteocalcin. Rev. Endocr. Metab. Disord. 2015, 16 (2), 93–98. https://doi.org/10.1007/s11154-014-9307-7. (15) Mason, A. C.; Evers, W. D.; Hanley, E. E. Osteoporosis: What you should know https://www.purdue.edu/enjoyfoodbeactive/factsheets/nutrition/osteoporosiswhatyoushouldknow.aspx. (16) Khosla, S. Pathogenesis of Osteoporosis. Transl. Endocrinol. Metab. 2010, 1 (1), 55–86. https://doi.org/10.1210/TEAM.9781879225718.ch2. (17) Mirza, F.; Canalis, E. Management of Endocrine Disease: Secondary Osteoporosis: Pathophysiology and Management. Eur. J. Endocrinol. 2015, 173 (3), R131–R151. https://doi.org/10.1530/EJE-15-0118. (18) Erben, R. G. Hypothesis: Coupling between Resorption and Formation in Cancellous Bone Remodeling Is a Mechanically Controlled Event. Front. Endocrinol. (Lausanne). 2015, 0, 82. https://doi.org/10.3389/FENDO.2015.00082. (19) Parra-Torres, A. Y.; Valdés-Flores, M.; Lorena, O.; Velázquez-Cruz, R. Molecular Aspects of Bone Remodeling. Top. Osteoporos. 2013. https://doi.org/10.5772/54905. (20) Hadjidakis, D. J.; Androulakis, I. I.Bone Remodeling. Ann. N. Y. Acad. Sci. 2006, 1092 (1), 385–396. https://doi.org/10.1196/annals.1365.035. (21) Siddiqui, J. A.; Partridge, N. C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31 (3), 233–245. https://doi.org/10.1152/physiol.00061.2014. (22) Raggatt, L. J.; Partridge, N. C. Cellular and Molecular Mechanisms of Bone Remodeling. J. Biol. Chem. 2010, 285 (33), 25103–25108. https://doi.org/10.1074/JBC.R109.041087. (23) Riggs, B. L. The Mechanisms of Estrogen Regulation of Bone Resorption. J. Clin. Invest. 2000, 106 (10), 1203–1204. https://doi.org/10.1172/JCI11468. (24) Weitzmann, M. N.; Pacifici, R. Estrogen Deficiency and Bone Loss: An Inflammatory Tale. J. Clin. Invest. 2006, 116 (5), 1186–1194. https://doi.org/10.1172/JCI28550. (25) Yamashita, T.; Yao, Z.; Li, F.; Zhang, Q.; Badell, I. R.; Schwarz, E. M.; Takeshita, S.; Wagner, E. F.; Noda, M.; Matsuo, K.; Xing, L.; Boyce, B. F. NF-KappaB P50 and P52 Regulate Receptor Activator of NF-KappaB Ligand (RANKL) and Tumor Necrosis Factor-Induced Osteoclast Precursor Differentiation by Activating c-Fos and NFATc1. 2007, 282 (25), 18245–18253. https://doi.org/10.1074/jbc.M610701200. (26) Eferl, R.; Hoebertz, A.; Schilling, A. F.; Rath, M.; Karreth, F.; Kenner, L.; Amling, M.; Wagner, E. F. The Fos-Related Antigen Fra-1 Is an Activator of Bone Matrix Formation. EMBO J. 2004, 23 (14), 2789–2799. https://doi.org/10.1038/sj.emboj.7600282. (27) Brown, J. L.; Kumbar, S. G.; Laurencin, C. T. Bone Tissue Engineering. Biomater. Sci. An Introd. to Mater. Third Ed. 2013, 1194–1214. https://doi.org/10.1016/B978-0-08-087780-8.00113-3. (28) Plotkin, L. I. Apoptotic Osteocytes and the Control of Targeted Bone Resorption. Curr. Osteoporos. Rep. 2014, 12 (1), 121–126. https://doi.org/10.1007/s11914-014-0194-3. (29) Klein-Nulend, J.; Bakker, A. D.; Bacabac, R. G.; Vatsa, A.; Weinbaum, S. Mechanosensation and Transduction in Osteocytes. Bone 2013, 54 (2), 182–190. https://doi.org/10.1016/j.bone.2012.10.013. (30) Klein-Nulend, J.; Bacabac, R. G.; Bakker, A. D. Mechanical Loading and How It Affects Bone Cells: The Role of the Osteocyte Cytoskeleton in Maintaining Our Skeleton. Eur. Cell. Mater. 2012, 24, 278–291. https://doi.org/10.22203/ecm.v024a20. (31) Dallas, S. L.; Prideaux, M.; Bonewald, L. F. The Osteocyte: An Endocrine Cell … and More. Endocr. Rev. 2013, 34 (5), 658. https://doi.org/10.1210/ER.2012-1026. (32) Tresguerres, F.; Torres, J.; López-Quiles, J.; Hernández, G.; Vega, J.; Tresguerres, I. The Osteocyte: A Multifunctional Cell within the Bone. Ann. Anat. 2020, 227. https://doi.org/10.1016/J.AANAT.2019.151422. (33) Cauley, J. A.; Robbins, J.; Chen, Z.; Cummings, S. R.; Jackson, R. D.; LaCroix, A. Z.; LeBoff, M.; Lewis, C. E.; McGowan, J.; Neuner, J.; Pettinger, M.; Stefanick, M. L.; Wactawski-Wende, J.; Watts, N. B. Effects of Estrogen plus Progestin on Risk of Fracture and Bone Mineral Density: The Women’s Health Initiative Randomized Trial. JAMA 2003, 290 (13), 1729–1738. https://doi.org/10.1001/jama.290.13.1729. (34) Krum, S. A.; Miranda-Carboni, G. A.; Hauschka, P.V; Carroll, J. S.; Lane, T. F.; Freedman, L. P.; Brown, M. Estrogen Protects Bone by Inducing Fas Ligand in Osteoblasts to Regulate Osteoclast Survival. EMBO J. 2008, 27 (3), 535–545. https://doi.org/10.1038/sj.emboj.7601984. (35) Kameda, T.; Mano, H.; Yuasa, T.; Mori, Y.; Miyazawa, K.; Shiokawa, M.; Nakamaru, Y.; Hiroi, E.; Hiura, K.; Kameda, A.; Yang, N. N.; Hakeda, Y.; Kumegawa, M. Estrogen Inhibits Bone Resorption by Directly Inducing Apoptosis of the Bone-Resorbing Osteoclasts. J. Exp. Med. 1997, 186 (4), 489–495. https://doi.org/10.1084/jem.186.4.489. (36) Khalid, A. B.; Krum, S. A. Estrogen Receptors Alpha and Beta in Bone. Bone 2016, 87, 130–135. https://doi.org/10.1016/j.bone.2016.03.016. (37) Nicholas, N. Hormone Replacement Therapy (HRT). Medicolegal Issues Obstet. Gynaecol. 2018, 317–323. https://doi.org/10.1007/978-3-319-78683-4_58. (38) Yates, J.; Barrett-Connor, E.; Barlas, S.; Chen, Y. T.; Miller, P. D.; Siris, E. S. Rapid Loss of Hip Fracture Protection after Estrogen Cessation: Evidence from the National Osteoporosis Risk ASsessment. Obstet. Gynecol. 2004, 103 (3), 440–446. (39) D’Amelio, P.; Isaia, G. C. The Use of Raloxifene in Osteoporosis Treatment. Expert Opin. Pharmacother. 2013, 14 (7), 949–956. https://doi.org/10.1517/14656566.2013.782002. (40) Gennari, L.; Merlotti, D.; DePaola, V.; Martini, G.; Nuti, R. Bazedoxifene for the Prevention of Postmenopausal Osteoporosis. Ther. Clin. Risk Manag. 2008, 4 (6), 1229–1242. https://doi.org/10.2147/TCRM.S3476. (41) Drake, M. T.; Clarke, B. L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83 (9), 1032. https://doi.org/10.4065/83.9.1032. (42) Park-Wyllie, L. Y.; Mamdani, M. M.; Juurlink, D. N.; Hawker, G. A.; Gunraj, N.; Austin, P. C.; Whelan, D. B.; Weiler, P. J.; Laupacis, A. Bisphosphonate Use and the Risk of Subtrochanteric or Femoral Shaft Fractures in Older Women. J. Am. Med. Assoc. 2011, 305 (8), 783–789. https://doi.org/10.1001/jama.2011.190. (43) Rudran, B.; Super, J.; Jandoo, R.; Babu, V.; Nathan, S.; Ibrahim, E.; Wiik, A. Current Concepts in the Management of Bisphosphonate Associated Atypical Femoral Fractures. World J. Orthop. 2021, 12 (9), 661–671. https://doi.org/10.5312/WJO.V12.I9.660. (44) Suzuki, H.; Nakamura, I.; Takahashi, N.; Ikuhara, T.; Matsuzaki, K.; Isogai, Y.; Hori, M.; Suda, T. Calcitonin-Induced Changes in the Cytoskeleton Are Mediated by a Signal Pathway Associated with Protein Kinase A in Osteoclasts. Endocrinology 1996, 137 (11), 4685–4690. https://doi.org/10.1210/endo.137.11.8895334. (45) Chesnut, C. H.; Silverman, S.; Andriano, K.; Genant, H.; Gimona, A.; Harris, S.; Kiel, D.; Leboff, M.; Maricic, M.; Miller, P.; Moniz, C.; Peacock, M.; Richardson, P.; Watts, N.; Baylink, D.; Study, P. A Randomized Trial of Nasal Spray Salmon Calcitonin in Postmenopausal Women with Established Osteoporosis: The Prevent Recurrence of Osteoporotic Fractures Study. Am. J. Med. 2000, 109 (4), 267–276. (46) Mehta, N. M.; Malootian, A.; Gilligan, J. P. Calcitonin for Osteoporosis and Bone Pain. Curr. Pharm. Des. 2003, 9 (32), 2659–2676. (47) Gennari, C. Analgesic Effect of Calcitonin in Osteoporosis. Bone 2002, 30 (5 Suppl), 67S-70S. (48) McLaughlin, M. B.; Jialal, I. Calcitonin. In StatPearls; StatPearls Publishing, 2021. (49) Cummings, S. R.; San Martin, J.; McClung, M. R.; Siris, E. S.; Eastell, R.; Reid, I. R.; Delmas, P.; Zoog, H. B.; Austin, M.; Wang, A.; Kutilek, S.; Adami, S.; Zanchetta, J.; Libanati, C.; Siddhanti, S.; Christiansen, C. Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2009, 361 (8), 756–765. https://doi.org/10.1056/NEJMoa0809493. (50) Deeks, E. Denosumab: A Review in Postmenopausal Osteoporosis. Drugs Aging 2018, 35 (2), 163–173. https://doi.org/10.1007/S40266-018-0525-7. (51) Boquete-Castro, A.; Gómez-Moreno, G.; Calvo-Guirado, J. L.; Aguilar-Salvatierra, A.; Delgado-Ruiz, R. A. Denosumab and Osteonecrosis of the Jaw. A Systematic Analysis of Events Reported in Clinical Trials. Clin. Oral Implants Res. 2016, 27 (3), 367–375. https://doi.org/10.1111/CLR.12556. (52) Reginster, J. Y.; Seeman, E.; DeVernejoul, M. C.; Adami, S.; Compston, J.; Phenekos, C.; Devogelaer, J. P.; Curiel, M. D.; Sawicki, A.; Goemaere, S.; Sorensen, O. H.; Felsenberg, D.; Meunier, P. J. Strontium Ranelate Reduces the Risk of Nonvertebral Fractures in Postmenopausal Women with Osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) Study. J. Clin. Endocrinol. Metab. 2005, 90 (5), 2816–2822. https://doi.org/10.1210/JC.2004-1774. (53) Meunier, P. J.; Roux, C.; Ortolani, S.; Diaz-Curiel, M.; Compston, J.; Marquis, P.; Cormier, C.; Isaia, G.; Badurski, J.; Wark, J. D.; Collette, J.; Reginster, J. Y. Effects of Long-Term Strontium Ranelate Treatment on Vertebral Fracture Risk in Postmenopausal Women with Osteoporosis. Osteoporos. Int. 2009, 20 (10), 1663–1673. https://doi.org/10.1007/s00198-008-0825-6. (54) Fogelman, I.; Blake, G. Strontium Ranelate for the Treatment of Osteoporosis. BMJ 2005, 330 (7505), 1400–1401. https://doi.org/10.1136/BMJ.330.7505.1400. (55) Yu, B.; Zhao, X.; Yang, C.; Crane, J.; Xian, L.; Lu, W.; Wan, M.; Cao, X. PTH Induces Differentiation of Mesenchymal Stem Cells by Enhancing BMP Signaling. J. Bone Miner. Res. 2012, 27 (9), 2001. https://doi.org/10.1002/JBMR.1663. (56) Minisola, S.; Cipriani, C.; Grotta, G.; Colangelo, L.; Occhiuto, M.; Biondi, P.; Sonato, C.; Vigna, E.; Cilli, M.; Pepe, J. Update on the Safety and Efficacy of Teriparatide in the Treatment of Osteoporosis. Ther. Adv. Musculoskelet. Dis. 2019, 11. https://doi.org/10.1177/1759720X19877994. (57) Miller, P. D.; Hattersley, G.; Riis, B. J.; Williams, G. C.; Lau, E.; Russo, L. A.; Alexandersen, P.; Zerbini, C. A. F.; Hu, M.; Harris, A. G.; Fitzpatrick, L. A.; Cosman, F.; Christiansen, C. et al. Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis: A Randomized Clinical Trial. JAMA 2016, 316 (7), 722–733. https://doi.org/10.1001/JAMA.2016.11136. (58) Tu, K. N.; Lie, J. D.; Wan, C. K. V.; Cameron, M.; Austel, A. G.; Nguyen, J. K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43 (2), 92. (59) Okman-Kilic, T. Estrogen Deficiency and Osteoporosis. In Advances in Osteoporosis; InTech, 2015. https://doi.org/10.5772/59407. (60) Krum, S. A.; Chang, J.; Miranda-Carboni, G.; Wang, C.-Y. Novel Functions for NFκB: Inhibition of Bone Formation. Nat. Rev. Rheumatol. 2010, 6 (10), 607–611. https://doi.org/10.1038/nrrheum.2010.133. (61) D’Amelio, P.; Grimaldi, A.; DiBella, S.; Brianza, S. Z. M.; Cristofaro, M. A.; Tamone, C.; Giribaldi, G.; Ulliers, D.; Pescarmona, G. P.; Isaia, G. Estrogen Deficiency Increases Osteoclastogenesis Up-Regulating T Cells Activity: A Key Mechanism in Osteoporosis. Bone 2008, 43 (1), 92–100. https://doi.org/10.1016/j.bone.2008.02.017. (62) Cenci, S.; Weitzmann, M. N.; Roggia, C.; Namba, N.; Novack, D.; Woodring, J.; Pacifici, R. Estrogen Deficiency Induces Bone Loss by Enhancing T-Cell Production of TNF-Alpha. J. Clin. Invest. 2000, 106 (10), 1229–1237. https://doi.org/10.1172/JCI11066. (63) Kousteni, S.; Han, L.; Chen, J.-R.; Almeida, M.; Plotkin, L. I.; Bellido, T.; Manolagas, S. C. Kinase-Mediated Regulation of Common Transcription Factors Accounts for the Bone-Protective Effects of Sex Steroids. J. Bone Miner. Res 2003, 111 (11), 1651–1664. https://doi.org/10.1172/JCI200317261. (64) Weitzman, M. N.; Pacifici, R. T Cells: Unexpected Players in the Bone Loss Induced by Estrogen Deficiency and in Basal Bone Homeostasis. Ann. N. Y. Acad. Sci. 2007, 1116 (1), 360–375. https://doi.org/10.1196/annals.1402.068. (65) Huang, M.; Sharma, S.; Zhu, L. X.; Keane, M. P.; Luo, J.; Zhang, L.; Burdick, M. D.; Lin, Y. Q.; Dohadwala, M.; Gardner, B.; Batra, R. K.; Strieter, R. M.; Dubinett, S. M.IL-7 Inhibits Fibroblast TGF-Beta Production and Signaling in Pulmonary Fibrosis. J. Clin. Invest. 2002, 109 (7), 931–937. https://doi.org/10.1172/JCI14685. (66) Cagnacci, A.; Venier, M.The Controversial History of Hormone Replacement Therapy. Medicina (Kaunas). 2019, 55 (9), 602. https://doi.org/10.3390/medicina55090602. (67) Gurney, E.; Nachtigall, M.; Nachtigall, L.; Naftolin, F.The Women’s Health Initiative Trial and Related Studies: 10 Years Later: A Clinician’s View. J. Steroid Biochem. Mol. Biol. 2014, 142, 4–11. https://doi.org/10.1016/J.JSBMB.2013.10.009. (68) Mott, N. N.; Pak, T. R.Estrogen Signaling and the Aging Brain: Context-Dependent Considerations for Postmenopausal Hormone Therapy. ISRN Endocrinol. 2013, 2013, 814690. https://doi.org/10.1155/2013/814690. (69) Muka, T.; Oliver-Williams, C.; Kunutsor, S.; Laven, J. S. E.; Fauser, B. C. J. M.; Chowdhury, R.; Kavousi, M.; Franco, O. H.Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality. JAMA Cardiol. 2016, 1 (7), 767. https://doi.org/10.1001/jamacardio.2016.2415. (70) Vitale, C.; Mercuro, G.; Cerquetani, E.; Marazzi, G.; Patrizi, R.; Pelliccia, F.; Volterrani, M.; Fini, M.; Collins, P.; Rosano, G. M. C.Time since Menopause Influences the Acute and Chronic Effect of Estrogens on Endothelial Function. Arterioscler. Thromb. Vasc. Biol. 2008, 28 (2), 348–352. https://doi.org/10.1161/ATVBAHA.107.158634. (71) Pereira, R. I.; Casey, B. A.; Swibas, T. A.; Erickson, C. B.; Wolfe, P.; VanPelt, R. E.Timing of Estradiol Treatment After Menopause May Determine Benefit or Harm to Insulin Action. J. Clin. Endocrinol. Metab. 2015, 100 (12), 4456–4462. https://doi.org/10.1210/jc.2015-3084. (72) Park, Y.-M.; Pereira, R. I.; Erickson, C. B.; Swibas, T. A.; Kang, C.; VanPelt, R. E.Time since Menopause and Skeletal Muscle Estrogen Receptors, PGC-1α, and AMPK. Menopause 2017, 24 (7), 815–823. https://doi.org/10.1097/GME.0000000000000829. (73) Park, Y.-M.; Keller, A. C.; Runchey, S. S.; Miller, B. F.; Kohrt, W. M.; VanPelt, R. E.; Kang, C.; Jankowski, C. M.; Moreau, K. L.Acute Estradiol Treatment Reduces Skeletal Muscle Protein Breakdown Markers in Early- but Not Late-Postmenopausal Women. Steroids 2019, 146, 43–49. https://doi.org/10.1016/j.steroids.2019.03.008. (74) Park, Y.-M.; Erickson, C.; Bessesen, D.; VanPelt, R. E.; Cox-York, K.Age- and Menopause-Related Differences in Subcutaneous Adipose Tissue Estrogen Receptor MRNA Expression. Steroids 2017, 121, 17–21. https://doi.org/10.1016/j.steroids.2017.03.001. (75) Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T.Isoflavones. Mol. 2019, Vol. 24, Page 1076 2019, 24 (6), 1076. https://doi.org/10.3390/MOLECULES24061076. (76) Kim, I.-S.Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, Vol. 10, Page 1064 2021, 10 (7), 1064. https://doi.org/10.3390/ANTIOX10071064. (77) Zaheer, K.; Akhtar, M. H.An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57 (6), 1280–1293. https://doi.org/10.1080/10408398.2014.989958. (78) Gómez-Zorita, S.; González-Arceo, M.; Fernández-Quintela, A.; Eseberri, I.; Trepiana, J.; Portillo, M. P.Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients 2020, 12 (12), 1–25. https://doi.org/10.3390/NU12123853. (79) Słupski, W.; Jawień, P.; Nowak, B.Botanicals in Postmenopausal Osteoporosis. Nutrients 2021, 13 (5). https://doi.org/10.3390/NU13051609. (80) Weaver, C. M.; Cheong, J. M. K.Soy Isoflavones and Bone Health: The Relationship Is Still Unclear. J. Nutr. 2005, 135 (5), 1243–1247. https://doi.org/10.1093/JN/135.5.1243. (81) Abdi, F.; Alimoradi, Z.; Haqi, P.; Mahdizad, F.Effects of Phytoestrogens on Bone Mineral Density during the Menopause Transition: A Systematic Review of Randomized, Controlled Trials. Climacteric 2016, 19 (6), 535–545. https://doi.org/10.1080/13697137.2016.1238451. (82) Shor, D.; Sathyapalan, T.; Atkin, S. L.; Thatcher, N. J.Does Equol Production Determine Soy Endocrine Effects? Eur. J. Nutr. 2012, 51 (4), 389–398. https://doi.org/10.1007/s00394-012-0331-7. (83) Morabito, N.; Crisafulli, A.; Vergara, C.; Gaudio, A.; Lasco, A.; Frisina, N.; D’Anna, R.; Corrado, F.; Pizzoleo, M. A.; Cincotta, M.; Altavilla, D.; Ientile, R.; Squadrito, F.Effects of Genistein and Hormone-Replacement Therapy on Bone Loss in Early Postmenopausal Women: A Randomized Double-Blind Placebo-Controlled Study. J. bone Miner. Res. 2002, 17 (10), 1904–1912. https://doi.org/10.1359/jbmr.2002.17.10.1904. (84) Marini, H.; Minutoli, L.; Polito, F.; Bitto, A.; Altavilla, D.; Atteritano, M.; Gaudio, A.; Mazzaferro, S.; Frisina, A.; Frisina, N.; Lubrano, C.; Bonaiuto, M.; D’Anna, R.; Cannata, M. L.; Corrado, F.; Adamo, E. B.; Wilson, S.; Squadrito, F.Effects of the Phytoestrogen Genistein on Bone Metabolism in Osteopenic Postmenopausal Women: A Randomized Trial. Ann. Intern. Med. 2007, 146 (12), 839–847. https://doi.org/10.7326/0003-4819-146-12-200706190-00005. (85) Uyar, Y.; Baytur, Y.; Inceboz, U.; Demir, B.; Gumuser, G.; Ozbilgin, K.Comparative Effects of Risedronate, Atorvastatin, Estrogen and SERMs on Bone Mass and Strength in Ovariectomized Rats. Maturitas 2009, 63 (3), 261–267. https://doi.org/10.1016/J.MATURITAS.2009.03.018. (86) Valsta, L.; Kilkkinen, A.; Mazur, W.; Nurmi, T.; Lampi, A.; Ovaskainen, M.; Korhonen, T.; Adlercreutz, H.; Pietinen, P.Phyto-Oestrogen Database of Foods and Average Intake in Finland. Br. J. Nutr. 2003, 89 Suppl 1 (S1), S31–S38. https://doi.org/10.1079/BJN2002794. (87) Bhagwat, S.; Haytowitz, D. B.USDA Database for the Isoflavone Content of Selected Foods, Release 2.1; Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, 2015. (88) Kuhnle, G. G. C.; Dell’Aquila, C.; Runswick, S. A.; Bingham, S. A.Variability of Phytoestrogen Content in Foods from Different Sources. Food Chem. 2009, 113 (4), 1184–1187. https://doi.org/10.1016/J.FOODCHEM.2008.08.004. (89) Thompson, L.; Boucher, B.; Liu, Z.; Cotterchio, M.; Kreiger, N.Phytoestrogen Content of Foods Consumed in Canada, Including Isoflavones, Lignans, and Coumestan. Nutr. Cancer 2006, 54 (2), 184–201. https://doi.org/10.1207/S15327914NC5402_5. (90) Messina, M.; Nagata, C.; Wu, A.Estimated Asian Adult Soy Protein and Isoflavone Intakes. Nutr. Cancer 2006, 55 (1), 1–12. https://doi.org/10.1207/S15327914NC5501_1. (91) Ho, S. C.; Woo, J.; Lam, S.; Chen, Y.; Sham, A.; Lau, J.Soy Protein Consumption and Bone Mass in Early Postmenopausal Chinese Women. Osteoporos. Int. 2003, 14 (10), 835–842. https://doi.org/10.1007/S00198-003-1453-9. (92) Ho, S.; Chan, S.; Yi, Q.; Wong, E.; Leung, P.Soy Intake and the Maintenance of Peak Bone Mass in Hong Kong Chinese Women. J. Bone Miner. Res. 2001, 16 (7), 1363–1369. https://doi.org/10.1359/JBMR.2001.16.7.1363. (93) Zhang, Z. -q.; He, L. -p. .; Liu, Y. -h.; Liu, J.; Su, Y. -x.; Chen, Y. -m.Association between Dietary Intake of Flavonoid and Bone Mineral Density in Middle Aged and Elderly Chinese Women and Men. Osteoporos. Int. 2014, 25 (10), 2417–2425. https://doi.org/10.1007/S00198-014-2763-9. (94) Lagari, V. S.; Levis, S.Phytoestrogens in the Prevention of Postmenopausal Bone Loss. J. Clin. Densitom. 2013, 16 (4), 445–449. https://doi.org/https://doi.org/10.1016/j.jocd.2013.08.011. (95) Zhang, X.; Shu, X.-O.; Li, H.; Yang, G.; Li, Q.; Gao, Y.-T.; Zheng, W.Prospective Cohort Study of Soy Food Consumption and Risk of Bone Fracture Among Postmenopausal Women. Arch. Intern. Med. 2005, 165 (16), 1890–1895. https://doi.org/10.1001/ARCHINTE.165.16.1890. (96) Ma, D.-F.; Qin, L.-Q.; Wang, P.-Y.; Katoh, R.Soy Isoflavone Intake Increases Bone Mineral Density in the Spine of Menopausal Women: Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2008, 27 (1), 57–64. https://doi.org/10.1016/j.clnu.2007.10.012. (97) Sansai, K.; Na Takuathung, M.; Khatsri, R.; Teekachunhatean, S.; Hanprasertpong, N.; Koonrungsesomboon, N.Effects of Isoflavone Interventions on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Osteoporos. Int. a J. Establ. as result Coop. between Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2020, 31 (10), 1853–1864. https://doi.org/10.1007/s00198-020-05476-z. (98) Zhang, X.; Liu, Y.; Xu, Q.; Zhang, Y.; Liu, L.; Li, H.; Li, F.; Liu, Z.; Yang, X.; Yu, X.; Kong, A.The Effect of Soy Isoflavone Combined with Calcium on Bone Mineral Density in Perimenopausal Chinese Women: A 6-Month Randomised Double-Blind Placebo-Controlled Study. Int. J. Food Sci. Nutr. 2020, 71 (4), 473–481. https://doi.org/10.1080/09637486.2019.1673703. (99) Chi, X.-X.; Zhang, T.The Effects of Soy Isoflavone on Bone Density in North Region of Climacteric Chinese Women. J. Clin. Biochem. Nutr. 2013, 53 (2), 102–107. https://doi.org/10.3164/jcbn.13-37. (100) Shedd-Wise, K. M.; Alekel, D. L.; Hofmann, H.; Hanson, K. B.; Schiferl, D. J.; Hanson, L. N.; VanLoan, M. D.The Soy Isoflavones for Reducing Bone Loss Study: 3-Yr Effects on PQCT Bone Mineral Density and Strength Measures in Postmenopausal Women. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2011, 14 (1), 47–57. https://doi.org/10.1016/j.jocd.2010.11.003. (101) Lydeking-Olsen, E.; Beck-Jensen, J.-E.; Setchell, K. D. R.; Holm-Jensen, T.Soymilk or Progesterone for Prevention of Bone Loss--a 2 Year Randomized, Placebo-Controlled Trial. Eur. J. Nutr. 2004, 43 (4), 246–257. https://doi.org/10.1007/s00394-004-0497-8. (102) Kanadys, W.; Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Drop, B.; Malm, M.; Kanecki, K.Effects of Soy Isoflavones on Biochemical Markers of Bone Metabolism in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18 (10). https://doi.org/10.3390/ijerph18105346. (103) Harkness, L. S.; Fiedler, K.; Sehgal, A. R.; Oravec, D.; Lerner, E.Decreased Bone Resorption with Soy Isoflavone Supplementation in Postmenopausal Women. J. Women’s Heal. 2004, 13 (9), 1000–1007. https://doi.org/10.1089/jwh.2004.13.1000. (104) Brink, E.; Coxam, V.; Robins, S.; Wahala, K.; Cassidy, A.; Branca, F.Long-Term Consumption of Isoflavone-Enriched Foods Does Not Affect Bone Mineral Density, Bone Metabolism, or Hormonal Status in Early Postmenopausal Women: A Randomized, Double-Blind, Placebo Controlled Study. Am. J. Clin. Nutr. 2008, 87 (3), 761–770. https://doi.org/10.1093/ajcn/87.3.761. (105) Wu, J.; Oka, J.; Tabata, I.; Higuchi, M.; Toda, T.; Fuku, N.; Ezaki, J.; Sugiyama, F.; Uchiyama, S.; Yamada, K.; Ishimi, Y.Effects of Isoflavone and Exercise on BMD and Fat Mass in Postmenopausal Japanese Women: A 1-Year Randomized Placebo-Controlled Trial. J. bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21 (5), 780–789. https://doi.org/10.1359/jbmr.060208. (106) Mei, J.; Yeung, S. S. C.; Kung, A. W. C.High Dietary Phytoestrogen Intake Is Associated with Higher Bone Mineral Density in Postmenopausal but Not Premenopausal Women. J. Clin. Endocrinol. Metab. 2001, 86 (11), 5217–5221. https://doi.org/10.1210/jcem.86.11.8040. (107) Taku, K.; Melby, M. K.; Nishi, N.; Omori, T.; Kurzer, M. S.Soy Isoflavones for Osteoporosis: An Evidence-Based Approach. Maturitas 2011, 70 (4), 333–338. https://doi.org/10.1016/j.maturitas.2011.09.001. (108) Ma, D.-F.; Qin, L.-Q.; Wang, P.-Y.; Katoh, R.Soy Isoflavone Intake Inhibits Bone Resorption and Stimulates Bone Formation in Menopausal Women: Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2008, 62 (2), 155–161. https://doi.org/10.1038/sj.ejcn.1602748. (109) Ma, D.-F.; Qin, L.-Q.; Wang, P.-Y.; Katoh, R.Soy Isoflavone Intake Increases Bone Mineral Density in the Spine of Menopausal Women: Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2008, 27 (1), 57–64. https://doi.org/10.1016/j.clnu.2007.10.012. (110) Chen, Y.-M.; Ho, S. C.; Lam, S. S. H.; Ho, S. S. S.; Woo, J. L. F.Beneficial Effect of Soy Isoflavones on Bone Mineral Content Was Modified by Years since Menopause, Body Weight, and Calcium Intake: A Double-Blind, Randomized, Controlled Trial. Menopause 2004, 11 (3), 246–254. https://doi.org/10.1097/01.gme.0000094394.59028.46. (111) Kreijkamp-Kaspers, S.; Kok, L.; Grobbee, D. E.; Haan, E. H. F.de; Aleman, A.; Lampe, J. W.; Schouw, Y. T.van der.Effect of Soy Protein Containing Isoflavones on Cognitive Function,Bone Mineral Density, and Plasma Lipids in Postmenopausal Women: A Randomized Controlled Trial. JAMA 2004, 292 (1), 65–74. https://doi.org/10.1001/JAMA.292.1.65. (112) Greendale, G. A.; FitzGerald, G.; Huang, M.-H.; Sternfeld, B.; Gold, E.; Seeman, T.; Sherman, S.; Sowers, M.Dietary Soy Isoflavones and Bone Mineral Density: Results from the Study of Women’s Health Across the Nation. Am. J. Epidemiol. 2002, 155 (8), 746–754. https://doi.org/10.1093/aje/155.8.746. (113) Akhlaghi, M.; Ghasemi Nasab, M.; Riasatian, M.; Sadeghi, F.Soy Isoflavones Prevent Bone Resorption and Loss, a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2020, 60 (14), 2327–2341. https://doi.org/10.1080/10408398.2019.1635078. (114) Lambert, M. N. T.; Hu, L. M.; Jeppesen, P. B.A Systematic Review and Meta-Analysis of the Effects of Isoflavone Formulations against Estrogen-Deficient Bone Resorption in Peri- and Postmenopausal Women. Am. J. Clin. Nutr. 2017, 106 (3), 801–811. https://doi.org/10.3945/AJCN.116.151464. (115) Levis, S.; Strickman-Stein, N.; Ganjei-Azar, P.; Xu, P.; Doerge, D. R.; Krischer, J.Soy Isoflavones in the Prevention of Menopausal Bone Loss and Menopausal Symptoms. Arch. Intern. Med. 2011, 171 (15), 1363. https://doi.org/10.1001/archinternmed.2011.330. (116) Tai, T. Y.; Tsai, K. S.; Tu, S. T.; Wu, J. S.; Chang, C. I.; Chen, C. L.; Shaw, N. S.; Peng, H. Y.; Wang, S. Y.; Wu, C. H.The Effect of Soy Isoflavone on Bone Mineral Density in Postmenopausal Taiwanese Women with Bone Loss: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Osteoporos. Int. 2012, 23 (5), 1571–1580. https://doi.org/10.1007/s00198-011-1750-7. (117) Zheng, X.; Lee, S.-K.; Chun, O. K.Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling. J. Med. Food 2016, 19 (1), 1–14. https://doi.org/10.1089/jmf.2015.0045. (118) Wei, P.; Liu, M.; Chen, Y.; Chen, D.Systematic Review of Soy Isoflavone Supplements on Osteoporosis in Women. Asian Pac. J. Trop. Med. 2012, 5 (3), 243–248. https://doi.org/10.1016/S1995-7645(12)60033-9. (119) Taku, K.; Melby, M. K.; Kurzer, M. S.; Mizuno, S.; Watanabe, S.; Ishimi, Y.Effects of Soy Isoflavone Supplements on Bone Turnover Markers in Menopausal Women: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Bone 2010, 47 (2), 413–423. https://doi.org/10.1016/J.BONE.2010.05.001. (120) Welch, A.; MacGregor, A.; Jennings, A.; Fairweather-Tait, S.; Spector, T.; Cassidy, A.Habitual Flavonoid Intakes Are Positively Associated with Bone Mineral Density in Women. J Bone Min. Res 2012, 27 (9), 1872–1878. https://doi.org/10.1002/jbmr.1649. (121) AC Hardcastle, L. A. D. R. H. M.Associations between Dietary Flavonoid Intakes and Bone Health in a Scottish Population. J Bone Min. Res 2011, 26 (5), 941–947. https://doi.org/10.1002/jbmr.285. (122) Grodstein, F.; Manson, J. E.; Stampfer, M. J.Hormone Therapy and Coronary Heart Disease: The Role of Time since Menopause and Age at Hormone Initiation. J. Womens. Health (Larchmt). 2006, 15 (1), 35–44. https://doi.org/10.1089/jwh.2006.15.35. (123) Sherwin, B. B.Estrogen Therapy: Is Time of Initiation Critical for Neuroprotection? Nat. Rev. Endocrinol. 2009, 5 (11), 620–627. https://doi.org/10.1038/nrendo.2009.193. (124) Hodis, H. N.; Mack, W. J.; Henderson, V. W.; Shoupe, D.; Budoff, M. J.; Hwang-Levine, J.; Li, Y.; Feng, M.; Dustin, L.; Kono, N.; Stanczyk, F. Z.; Selzer, R. H.; Azen, S. P.Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N. Engl. J. Med. 2016, 374 (13), 1221–1231. https://doi.org/10.1056/NEJMoa1505241. (125) Wang, S.-T.; Chang, H.-S.; Hsu, C.; Su, N.-W.Osteoprotective Effect of Genistein 7-O-Phosphate, a Derivative of Genistein with High Bioavailability, in Ovariectomized Rats. J. Funct. Foods 2019, 58, 171–179. https://doi.org/https://doi.org/10.1016/j.jff.2019.04.063. (126) EFSA Panel on Food Additives and Nutrient Sources added to Food.Risk Assessment for Peri- and Post-Menopausal Women Taking Food Supplements Containing Isolated Isoflavones. EFSA J. 2015, 13 (10), 4246. https://doi.org/10.2903/J.EFSA.2015.4246. (127) Koh, W.-P.; Wu, A. H.; Wang, R.; Ang, L.-W.; Heng, D.; Yuan, J.-M.; Yu, M. C.Gender-Specific Associations between Soy and Risk of Hip Fracture in the Singapore Chinese Health Study. Am………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79345-
dc.description.abstract"大豆異黃酮的攝取普遍被認為有益於骨質保健。由於其結構類似人體雌激素,因此異黃酮又被稱作植物性雌激素,且不乏許多異黃酮作為雌激素替代藥物的研究。然而,大豆異黃酮對於骨密度的影響研究甚多,結果卻不一致。因此本研究欲從女性停經狀態的角度,來探討大豆異黃酮於停經後婦女的骨密度與骨質疏鬆發生率的影響,並預期異黃酮保護骨質的效果在停經晚期女性較停經早期女性差。首先,以卵巢摘除後誘導骨質流失九十天的大鼠模擬停經晚期骨代謝模式,再介入大豆異黃酮中的金雀異黃酮並觀察其骨密度、骨小樑指摽,與血清生化數值評估晚介入模式的影響。接著以系統性文獻綜述的方式,設定條件篩選出合適的文獻,綜觀探討多個會影響骨密度及罹患骨質疏鬆的因子,如劑量、劑型、介入時間、骨頭測量部位、種族及停經狀態等。同時比較試驗設計相似但目標族群為停經早期或晚期兩種族群的結果,並比較同試驗中分析停經期早晚族群的研究。最後,以台灣營養健康狀況變遷調查(Nutrition and Health Survey in Taiwan, NAHSIT)中,24小時飲食回顧及食物頻率問卷中豆類製品的攝取量,換算成大豆異黃酮的攝取量,與受試者骨密度值及以臨床診斷標準T-score≤-2.5區分骨鬆與否做迴歸相關性分析。動物結果顯示較晚介入金雀異黃酮無法有保護骨質流失的功效;所有檢測指標均與卵巢摘除控制組大鼠無顯著差異,暗示在骨鬆發生一段時間後,金雀異黃酮已無抑制骨鬆的能力。系統性文獻綜述的比較中顯示,停經狀態會調控大豆異黃酮攝取或介入對於延緩骨質流失有效或無效,但在晚期或早期介入較有效應的結論是分歧的。NAHSIT資料分析的結果顯示大豆異黃酮攝取與全部受試者及全部女性的骨密度有正相關,且與全部女性的骨鬆發生率有負相關。然而,此相關性在校正其他干擾因子後無顯著性,且在分層分析中也無顯著影響。雖然如此,年齡與停經年數兩個於女性骨質健康最重要的決定因子,會因停經狀態而有不同影響。停經年數顯著影響停經早期女性的骨密度但不影響停經晚期女性;相反的,年齡顯著影響停經晚期女性的骨密度但不影響停經早期女性。以停經早期或晚期區分介入時間點可能是大豆異黃酮影響骨質健康的重要因子之一。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:58:32Z (GMT). No. of bitstreams: 1
U0001-2610202119415500.pdf: 4842102 bytes, checksum: 21ea565b3a20d6e3b52e4bb3099ff838 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 中文摘要 ii Abstract iv List of Figures ix List of Tables x Introduction 1 Literature Review 3 Osteoporosis 3 Definition 3 Diagnosis 4 Prevalence 5 Pathogenesis 6 Bone metabolism 9 Bone remodeling 9 Osteoclasts 10 Osteoblasts 11 Current therapies 13 Antiresorptive medication 13 Anabolic medication 17 Estrogen and bone 19 Time since menopause and bone 20 Soy isoflavones and bone 22 Aims and Objectives 24 Materials and Methods 25 Part 1 25 Animals 25 Bone density and microarchitecture 27 Bone turnover markers 28 Statistical analysis 28 Part 2 30 Search strategy and selection scheme 30 Outcome measures 32 Data extraction 33 Systematic review 33 Part 3 35 Data sources 35 Isoflavone contents allocation 35 Individual isoflavone intake 37 Regression analyses 38 Sub-group analyses 39 Analyses by isoflavone intake levels 40 Results 41 Part 1 41 Anthropometric analysis 41 Bone density and architecture 41 Bone turnover markers 42 Part 2 43 Characteristics of the articles 43 Studies on BMD 44 Studies on BTM 45 Comparing studies of early and late postmenopausal women 46 Effects of menopausal status 47 Effects of ethnicity 48 Other factors 49 Part 3 51 Characteristics of the subjects and their isoflavone intakes 51 Relationship between dietary isoflavone intakes and bone mineral density and osteoporosis risk 52 All subjects 52 All women 53 Premenopausal women 53 Postmenopausal women 54 Early postmenopausal women 54 Late postmenopausal women 55 Relationship between isoflavone intake levels and osteoporosis risk 55 Summary 55 Discussion 57 Part 1 57 Part 2 59 Part 3 62 Conclusion 68 References 71
dc.language.isoen
dc.title停經年數對大豆異黃酮於停經婦女骨代謝的影響zh_TW
dc.titleInfluence of time since menopause on the effects of soy isoflavones on bone metabolism in postmenopausal womenen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-4412-4377
dc.contributor.oralexamcommittee郭靜娟(Hsin-Tsai Liu),呂瑾立(Chih-Yang Tseng),郭村勇,潘敏雄
dc.subject.keyword大豆異黃酮,骨質疏鬆症,停經狀態,系統性文獻綜述,迴歸分析,zh_TW
dc.subject.keywordsoy isoflavones,osteoporosis,menopausal status,systematic review,regression analysis,en
dc.relation.page155
dc.identifier.doi10.6342/NTU202104272
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2024-01-01-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-2610202119415500.pdf4.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved