請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
| dc.contributor.author | Wan-Ting Chang | en |
| dc.contributor.author | 張菀庭 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:50:40Z | - |
| dc.date.available | 2023-08-09 | |
| dc.date.copyright | 2018-08-09 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | 王香蘭。2017。蜜環菌可以減緩強迫游泳試驗及不可預期慢性輕度壓力試驗所誘導之大鼠類憂鬱狀態。國立臺灣大學食品科技研究所碩士論文。
方麗華,陳昭姿 & 陳純誠。1998。憂鬱症的治療。台灣醫學,2(4),456-463。 台灣自殺防治學會暨全國自殺防治中心。2016。取自 http://www.tsos.org.tw/bulletin /17)。 江弘基,戴傅文,李明濱,王銘光,張文穎 & 蔡佩樺。2006。老人自殺問題。臺灣醫學,10(3),353-361。 林毓恩。2015。天麻水萃物及天麻苷對於不可預期慢性輕度壓力憂鬱症動物模式中單胺類神經傳導物質之調控作用及機轉。國立臺灣大學食品科技研究所碩士論文。 許瑞祥。2010。靈芝概論 (1-29頁)。臺北市:年喜文教基金會。 陳宜君。2017。北冬蟲夏草水萃物可能經由 ROCK2/Akt 路徑調節在不可預期慢性壓力動物模式中抗憂鬱之功效。國立臺灣大學食品科技研究所碩士論文。 陳美杏,呂昀陞 & 石信德。2010。新興菇類的栽培與發展。科學發展,446, 8-15。 國立臺灣大學醫學院附設醫院精神醫學部。2015。心理衛生專輯 (10-31頁)。取自 https://dep.mohw.gov.tw/DOMHAOH/cp-428-1360-107.html 劉志俊。2015。靈芝三萜藥理活性的研究進展。資訊科技與應用期刊,9(3),92-102。 劉宜婷。2014。不同焙度的咖啡對於受到皮質固酮誘導損傷的細胞可能具有神經保護及改善神經可塑性之功效。國立臺灣大學食品科技研究所碩士論文。 鄭泰安。2013。近 20 年台灣焦慮症與憂鬱症盛行率倍增。當代醫學,472,91-94。 盧之頤。2014。本草乘雅半偈 (1-2 頁)。北京:中國醫藥科技出版社。 謝燕萍。2006。憂鬱症的藥物治療。輔英醫訊,48,9-10。 藍振嘉,劉珈倩 & 陳映雪。2015。青少年憂鬱症。臺灣精神醫學, 29(1),10-19。 Andreatini, R., & Bacellar, L. F. (1999). The relationship between anxiety and depression in animal models: a study using the forced swimming test and elevated plus-maze. Brazilian Journal of Medical and Biological Research, 32, 1121-1126. American foundation for suicide prevention. (2018). Risk factors and warning signs. Retrieved from https://afsp.org/about-suicide/ Barton, D. A., Esler, M. D., Dawood, T., Lambert, E. A., Haikerwal, D., Brenchley, C., & Kaye, D. M. (2008). Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Archives of General Psychiatry, 65(1), 38-46. Baldi, E., Efoudebe, M., Lorenzini, C. A., & Bucherelli, C. (2005). Spatial navigation in the Morris water maze: working and long lasting reference memories. Neuroscience letters, 378(3), 176-180. Benito, E., & Barco, A. (2010). CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends in Neurosciences, 33(5), 230-240. Bishop, K. S., Kao, C. H., Xu, Y., Glucina, M. P., Paterson, R. R. M., & Ferguson, L. R. (2015). From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 114, 56-65. Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. Journal of visualized experiments: JoVE, 53. doi:10.3791/2920 Berton, O., & Nestler, E. J. (2006). New approaches to antidepressant drug discovery: beyond monoamines. Nature reviews. Neuroscience, 7(2), 137-151. Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. The New England Journal of Medicine, 358(1), 55-68. Bennett, S., & Thomas, A. J. (2014). Depression and dementia: cause, consequence or coincidence? Maturitas, 79(2), 184-190. Brandeis, R., Brandys, Y., & Yehuda, S. (1989). The use of the Morris water maze in the study of memory and learning. International Journal of Neuroscience, 48(1-2), 29-69. Carnero, A., & Paramio, J. M. (2014). The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Frontiers in Oncology, 4, 252. doi:10.3389/fonc.2014.00252 Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., & Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386-389. Cassel, J. C., & de Vasconcelos, A. P. (2015). Importance of the ventral midline thalamus in driving hippocampal functions. In Progress in Brain Research, 219, 145-161. Cuadrado-Tejedor, M., Ricobaraza, A., Del Río, J., Frechilla, D., Franco, R., Pérez-Mediavilla, A., & arcia-Osta, A. (2011). Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behavioural Brain Research, 220(2), 338-343. Chen, P. J., Hsieh, C. L., Su, K. P., Hou, Y. C., Chiang, H. M., Lin, I. H., & Sheen, L. Y. (2008). The antidepressant effect of Gastrodia elata Bl. on the forced-swimming test in rats. The American Journal of Chinese Medicine, 36(1), 95-106. Cheung, W. M., Hui, W. S., Chu, P. W., Chiu, S. W., & Ip, N. Y. (2000). Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Letters, 486(3), 291-296. Cai, Z. L., Wang, C. Y., Jiang, Z. J., Li, H. H., Liu, W. X., Gong, L. W., Xiao, P., & Li, C. H. (2013). Effects of cordycepin on Y-maze learning task in mice. European Journal of Pharmacology, 714(1-3), 249-253. Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621-681. Detke, M. J., Rickels, M., & Lucki, I. (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology, 121(1), 66-72. Davis, N. M., Sokolosky, M., Stadelman, K., Abrams, S. L., Libra, M., Candido, S., Nicoletti, S., Polesel, J., Maestro, R., D’Assoro, A., Drobot, L., Rakus, D., Gizak, A., Laidler, P., Dulińska-Litewka, J., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Montalto, G., Cervello, M., Fitzgerald, T. L., Demidenko, Z. N., Martelli, A. M., Cocco, L., Steelman, L. S., & Drobot, L. (2014). Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 5(13), 4603-4650. Duman, R. S., Aghajanian, G. K., Sanacora, G., & Krystal, J. H. (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nature Medicine, 22(3), 238-249. Das, S. K., Masuda, M., Sakurai, A., & Sakakibara, M. (2010). Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia, 81, 961-968. Fawcett, J., Clark, D. C., Scheftner, W. A., & Gibbons, R. D. (1983). Assessing anhedonia in psychiatric patients: The Pleasure Scale. Archives of Ggeneral Psychiatry, 40(1), 79-84. First, M., Gil-Ad, I., Taler, M., Tarasen0UJko, I., Novak, N., & Weizman, A. (2011). The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. Journal of Molecular Neuroscience, 45(2), 246-255. Free, R. B., Clark, J., Amara, S., & Sibley, D. R. (2017). Neurotransmission in the Central Nervous System. Goodman & Gilman's: The Pharmacological Basis of Therapeutics (13th ed., pp.363-396). New York. Gunawardena, D., Bennett, L., Shanmugam, K., King, K., Williams, R., Zabaras, D., & Münch, G. (2014). Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages. Food Chemistry, 148, 92-96. Glowinski, J. & Iversen, L. L. (1966). Regional studies of catecholamines in the rat brain. Journal of Neurochemistry, 13(8), 655-669. Garcia, L. S., Comim, C. M., Valvassori, S. S., Réus, G. Z., Andreazza, A. C., Stertz, L., Fries, G. R., Gavioli, E. C., Kapczinski, F., & Quevedo, J. (2008). Chronic administration of ketamine elicits antidepressant‐like effects in rats without affecting hippocampal brain‐derived neurotrophic factor protein levels. Basic & Clinical Pharmacology & Toxicology, 103(6), 502-506. Garcia, L. S., Comim, C. M., Valvassori, S. S., Réus, G. Z., Stertz, L., Kapczinski, F., Gavioli, E. C., & Quevedo, J. (2009). Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 33(3), 450-455. Gawali, N. B., Bulani, V. D., Gursahani, M. S., Deshpande, P. S., Kothavade, P. S., & Juvekar, A. R. (2017). Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Research, 1663, 66-77. Greene, L. A., & Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences, 73(7), 2424-2428. Grønli, J., Bramham, C., Murison, R., Kanhema, T., Fiske, E., Bjorvatn, B., & Portas, C. M. (2006). Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacology Biochemistry and Behavior, 85(4), 842-849. Hasler, G. (2010). Pathophysiology of depression: do we have any solid evidence of interest to clinicians. World Psychiatry, 9(3), 155-161. Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 2243-2257. Hill, M. N., Patel, S., Carrier, E. J., Rademacher, D. J., Ormerod, B. K., Hillard, C. J., & Gorzalka, B. B. (2005). Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology, 30(3), 508-515. Ignácio, Z. M., Réus, G. Z., Arent, C. O., Abelaira, H. M., Pitcher, M. R., & Quevedo, J. (2016). New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. British Journal of Clinical Pharmacology, 82(5), 1280-1290. Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: a critical review. Learning & Memory, 22(9), 411-416. Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S. (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59(8), 673-680. Katz, R. J., Roth, K. A., & Carroll, B. J. (1981). Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neuroscience & Biobehavioral Reviews, 5, 247-251. Klimek, V., & Papp, M. (1994). The effect of MK-801 and imipramine on beta-adrenergic and 5-HT2 receptors in the chronic mild stress model of depression in rats. Polish Journal of Pharmacology, 46, 67-69. Krishnan, V., & Nestler, E. J. (2011). Animal models of depression: molecular perspectives, Current Topics in Behavioral Neurosciences, 7, 121-147. Lee, B., Park, J., Park, J., Shin, H. J., Kwon, S., Yeom, M. Sur, B., Kim, S., Kim, S., Lee, H., & Yoon, S. H. (2011). Cordyceps militaris improves neurite outgrowth in Neuro2a cells and reverses memory impairment in rats. Food Science and Biotechnology, 20(6), 1599-1608. Liu, D., Zhang, Q., Gu, J., Wang, X., Xie, K., Xian, X., Wang, J., Jiang, H., & Wang, Z. (2014). Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 49, 21-29. Lesch, K. P., & Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron, 76(1), 175-191. Linnoila, M., Karoum, F., & Potter, W. Z. (1983). Effects of antidepressant treatments on dopamine turnover in depressed patients. Archives of General Psychiatry, 40(9), 1015–1017. Li, M., Zhou, J., Qian, J., Cheng, X., Wu, H., & Li, L. (2016). Target genes involved in corticosterone-induced PC12 cell viability and neurite disorders: a potential molecular mechanism of major depressive disorder. Psychiatry Research, 235, 206-208. Liao, S. C., Chen, W. J., Lee, M. B., Lung, F. W., Lai, T. J., & Liu, C. Y. (2012). Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications. Psychological Medicine, 42(60), 1227-1237. Lai, Y. S., Chen, W. C., Ho, C. T., Lu, K. H., Lin, S. H., Tseng, H. C., Lin, S. Y., & Sheen, L. Y. (2014). Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. Journal of Agricultural and Food Chemistry, 62, 5897-5906. Lin, Y. E., Lin, S. H., Chen, W. C., Ho, C. T., Lai, Y. S., Panyod, S., & Sheen, L. Y. (2016). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. Journal of Ethnopharmacology, 187, 57-65. Liu, X. L., Luo, L., Mu, R. H., Liu, B. B., Geng, D., Liu, Q., & Yi, L. T. (2015). Fluoxetine regulates mTOR signaling in a region-dependent manner in depression-like mice. Scientific Reports, 5, 16024. doi:10.1038/srep16024 Markowska, A. L., Long, J. M., Johnson, C. T., & Olton, D. S. (1993). Variable-interval probe test as a tool for repeated measurements of spatial memory in the water maze. Behavioral Neuroscience, 107(4), 627-632. McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22(1), 105-122. Matsuzaki, H., Shimizu, Y., Iwata, N., Kamiuchi, S., Suzuki, F., Iizuka, H., Iizuka, H., Hibino, Y., & Okazaki, M. (2013). Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC Complementary and Alternative Medicine, 13(1), 370. doi: 10.1186/1472-6882-13-370 Michajlovskij, N., Lichardus, B., Kvetnanský, R., & Ponec, J. (1988). Effect of acute and repeated immobilization stress on food and water intake, urine output and vasopressin changes in rats. Endocrinologia Experimentalis, 22(3), 143-157. Martí, O., Martí, J., & Armario, A. (1994). Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiology & Behavior, 55(4), 747-753. Muscat, R., & Willner, P. (1992). Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis. Neuroscience & Biobehavioral Reviews, 16, 507-517. Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2014). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97-106. O'Donnell, J. M., & Shelton, R. C. (2011). Drug therapy of depression and anxiety disorders. Gilman's: The Pharmacological Basis of Therapeutics (12th ed., pp.429-460). New York, NY: McGraw-Hill Education. Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology, 33(1), 88-109. Phan, C. W., David, P., Naidu, M., Wong, K. H., & Sabaratnam, V. (2015). Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Critical Reviews in Biotechnology, 35(3), 355-368. Pathak, L., Agrawal, Y., & Dhir, A. (2013). Natural polyphenols in the management of major depression. Expert Opinion on Investigational Drugs, 22(7), 863-880. Pineles, S. L., Mineka, S., & Zinbarg, R. E. (2008). Feedback‐seeking and depression in survivors of domestic violence. Depression and Anxiety, 25(12), 166-172. Pucilowski, O., Overstreet, D. H., Rezvani, A. H., & Janowsky, D. S. (1993). Chronic mild stress induced anhedonia: greater effect in a genetic rat model of depression. Physiology & Behavior, 54, 1215-1220. Porsolt, R. D., Le Pichon, M., & Jalfre, M. L. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. Pietropaolo, S. (2010). Mood and anxiety-related phenotypes in mice: characterization using behavioral tests. Genes, Brain and Behavior, 9(5), 1-20. Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology, 27(1), 24-31. Ramos-Hryb, A. B., Cunha, M. P., Kaster, M. P., & Rodrigues, A. L. S. (2017). Natural polyphenols and terpenoids for depression treatment: current status. Studies in Natural Products Chemistry, 55, 181-221. Rong, H., Wang, G., Liu, T., Wang, H., Wan, Q., & Weng, S. (2010). Chronic mild stress induces fluoxetine-reversible decreases in hippocampal and cerebrospinal fluid levels of the neurotrophic factor S100B and its specific receptor. International Journal of Molecular Sciences, 11, 5310-5322. Sherman, A. D., Sacquitne, J. L., & Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacology Biochemistry and Behavior, 16(3), 449-454. Sanodiya, B. S., Thakur, G. S., Baghel, R. K., Prasad, G. B. K. S., & Bisen, P. S. (2009). Ganoderma lucidum: a potent pharmacological macrofungus. Current Pharmaceutical Biotechnology, 10(8), 717-742. Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009-1014. Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. Seligman, M. E. (1972). Learned helplessness. Annual Review of Medicine, 23(1), 407-412. Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry, 157(10), 1552-1562. Saveanu, R. V., & Nemeroff, C. B. (2012). Etiology of depression: genetic and environmental factors. Psychiatric Clinics of North America, 35(1), 51-71. Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8), 1516-1518. Tan, X., Gu, J., Zhao, B., Wang, S., Yuan, J., Wang, C., & Jia, X. (2015). Ginseng improves cognitive deficit via the RAGE/NF-κB pathway in advanced glycation end product-induced rats. Journal of Ginseng Research, 39(2), 116-124. Tianzhu, Z., Shihai, Y., & Juan, D. (2014). Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evidence-Based Complementary and Alternative Medicine, 2014. doi:10.1155/2014/438506 Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848-858. Van der Jeugd, A., Ahmed, T., Burnouf, S., Belarbi, K., Hamdame, M., Grosjean, M. E., & D’Hooge, R. (2011). Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiology of Learning and Memory, 95(3), 296-304. Vaudry, D., Stork, P. J. S., Lazarovici, P., & Eiden, L. E. (2000). Signaling pathways for PC12 cell differentiation: making the right connections. Science, 296(5573), 1648-1649. West, A. P. (1990). Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 14, 863-877. Wong, K. H., Sabaratnam, V., Abdullah, N., Naidu, M., & Keynes, R. (2007). Activity of aqueous extracts of lions mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108–15. The International Journal of Medicinal Mushrooms, 9(1), 57-65. Wang, N., Shi, M., Wang, J. Y., & Luo, F. (2013). Brain-network mechanisms underlying the divergent effects of depression on spontaneous versus evoked pain in rats: a multiple single-unit study. Experimental Neurology, 250, 165-175. Willner, P. (1983). Dopamine and depression: a review of recent evidence. Empirical studies. Brain Research Reviews, 6(3), 211-224. Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3), 358-364. Willner, P. (1990). Animal models of depression: an overview. Pharmacology & Therapeutics, 45(3), 425-455. Willner, P., Muscat, R., & Papp, M. (1992). Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neuroscience & Biobehavioral Reviews, 16, 525-534. Willner, P. (2005). Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology, 52(2), 90-110. World health organization. (2012). Depression: A global crisis. World mental health day, October 10 2012. World federation for mental health, Occoquan, Va, USA. World health organization. (2017). Depression and other common mental disorders: global health estimates. Retrieved from http://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/ Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471-484. Yuan, D. J., Zhang, Y. F., & Yao, C. X. (2011). Effects of Ganoderma lucidum polysaccharides on synapsis and hippocampal synaptophysin expression in Alzheimer's rats model. Chinese Journal of Experimental Traditional Medical Formulae, 17(17), 151-155. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79179 | - |
| dc.description.abstract | 世界衛生組織統計,全球逾 3 億人口患有憂鬱症,且預測在 2030 年將成為全球第一高負擔疾病,顯然憂鬱症為全球所須關注的議題。然而,藥物副作用造成病人服藥順應性不高,因此本研究希望找尋輔助治療,或以預防方式減少憂鬱症發生。研究指出,靈芝 (Ganoderma lucidum, GL) 中的三萜類可以增加神經滋養因子 (brain-derived neurotrophic factor, BDNF) 的濃度,有神經保護的效果。而蟲草米 (Cordyceps militaris rice, CMR) 為培養北蟲草之固態基質,富含北蟲草的活性成分蟲草素 (cordycepin),研究指出在不可預期慢性溫和壓力 (unpredictable chronic mild stress, UCMS) 模式中,蟲草素能提高小鼠的糖水偏好,因此蟲草米是有具抗憂鬱潛力之食材。本研究以此兩種材料組合成複方,希望能減少各材料之用量即達到抗憂鬱之功效,以降低因高劑量造成副作用之風險,同時節省成本增加產品開發時的競爭力。此外,有研究發現 UCMS 會使老鼠 BDNF 濃度下降,進而影響認知功能甚至是記憶,故本研究欲探討靈芝與蟲草米 (GL-CMR) 複方在 UCMS 模式中是否能改善類憂鬱行為及空間學習記憶能力,並分析大鼠腦部神經傳導物質與神經可塑性蛋白質表現。結果顯示本實驗之 UCMS 顯著降低大鼠的蔗糖水偏好,表示已誘導出類憂鬱行為,同時給予 GL-CMR 的組別顯著增加約 25% 蔗糖水攝取,且於莫氏水迷宮 (Morris water maze, MWM) 訓練期中,GL-CMR 的組別相較於負控制組 (negative control, NCTL) 有顯著較低的脫逃潛伏 (escape latency) 時間。此外,於海馬迴中,低劑量組相較 NCTL 顯著減少約 34% 血清素轉換率、中劑量組相較 NCTL 顯著減少約 50% 多巴胺轉換率;NCTL 較控制組有顯著較低的 phospho-protein kinase B (p-Akt)、phospho-cAMP response element-binding (p-CREB) 及 phospho-mammalian target of rapamycin (p-mTOR) 相對表現量,而給予 GL-CMR 的組別能顯著提升 p-CREB、p-Akt、p-mTOR 及 postsynaptic density protein 95 (PSD 95) 相對表現量,同時也使 BDNF 有增加趨勢,表示 GL-CMR 能回復因 UCMS 誘導所減少之神經可塑性的蛋白質表現。綜合上述結果證實 GL-CMR 能改善大鼠類憂鬱行為、促進 MWM 中學習記憶能力,且可能經由活化神經可塑性路徑達到抗憂鬱功效。 | zh_TW |
| dc.description.abstract | As shown in statistics by World Health Organization (WHO), there has been more than 300 million people suffering from depression. Depression has been the leading cause of disability worldwide for many years. WHO also predicts that depression will result in the highest global burden of disease by 2030. Obviously, depression is highly concerned nowadays. However, the side effects of antidepressants often make low compliance with medication in patients. Prevention of depression with complementary and alternative medicine is considered better than conventional therapies. A study showed that triterpenoids in Ganoderma lucidum (GL) could increase brain-derived neurotrophic factor (BDNF) to protect neurons. Cordyceps militaris rice (CMR), the solid-state medium for cultivation of Cordyceps militaris (CM), was found to rich with cordycepin, which can significantly increase sucrose preference of mice in an unpredictable chronic mild stress (UCMS) model. Thus, CMR is potential to exert antidepressant-like effects. In this study, I combined GL and CMR as a treatment and hypothesized it could use less dose of these two materials to exhibit the antidepressive effects. Besides, one study showed that UCMS decreased BDNF of rodents, and subsequently impacted on cognition and memory. Therefore, the purpose of this study is to investigate whether GL-CMR can reverse sucrose preference, and spatial learning memory. In addition, I analyzed neurotransmitters and neuroplasticity-related proteins in brains of UCMS-induced rats. Results showed that UCMS significantly decreased sucrose preference of rats, and GL-CMR could reverse it by 25%. In training trials of Morris water maze, GL-CMR could significantly decrease the escape latency compared to that of NCTL. In the hippocampus, turnover rate of serotonin in low dose group was lower than that of NCTL by 34%, and turnover rate of dopamine in medium dose group was lower than that of NCTL by 50%. Furthermore, expression of phospho-cAMP response element-binding protein (p-CREB), phospho-protein kinase B (p-Akt), phospho-mammalian target of rapamycin (p-mTOR) and postsynaptic density protein 95 (PSD 95) in NCTL decreased, by contrast, it could be reversed by treatment of GL-CMR. Also, expression of BDNF was increased by GL-CMR, indicating its capability of improving the neuroplasticity of rats. In conclusion, GL-CMR could reverse the depressive-like behaviors, improve learning memory, and have antidepressive effects by activating the pathways of neuroplasticity in UCMS-induced rats. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:50:40Z (GMT). No. of bitstreams: 1 ntu-107-R05641011-1.pdf: 3292310 bytes, checksum: 1584b8bf2b787d27cbc01b739fa80ae7 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 II Abstract III 目錄 V 圖次 VII 表次 IX 縮寫表 X 第一章 前言 1 第二章 文獻回顧 2 第一節 憂鬱症 2 第二節 研究模式 20 第三節 樣品介紹 22 第三章 研究目的 26 第四章 實驗架構 27 第五章 實驗材料與方法 29 第一節 實驗材料 29 第二節 實驗方法 34 第六章 結果 47 第一節 動物飼養與行為實驗 47 第二節 大鼠腦部單胺類神經傳導物質分析 49 第三節 大鼠腦部神經可塑性相關路徑蛋白質表現量探討 50 第七章 討論 64 第一節 動物飼養與行為實驗 64 第二節 大鼠腦部單胺類神經傳導物質分析 66 第三節 大鼠腦部神經可塑性相關路徑蛋白質表現量探討 68 第八章 結論 72 第九章 未來研究方向 73 第十章 參考文獻 74 第十一章 附錄 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 憂鬱症 | zh_TW |
| dc.subject | 神經可塑性 | zh_TW |
| dc.subject | 記憶 | zh_TW |
| dc.subject | 蟲草米 | zh_TW |
| dc.subject | 靈芝 | zh_TW |
| dc.subject | Cordyceps militaris rice | en |
| dc.subject | Depression | en |
| dc.subject | neuroplasticity | en |
| dc.subject | Ganoderma lucidum | en |
| dc.subject | memory | en |
| dc.title | 靈芝與蟲草米複方萃取物於不可預期慢性溫和壓力動物模式中之抗憂鬱功效 | zh_TW |
| dc.title | The antidepressive effects of Ganoderma lucidum-Cordyceps militaris rice extract formula in unpredictable chronic mild stress animal model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡宗明,沈賜川,陳碩菲 | |
| dc.subject.keyword | 憂鬱症,靈芝,蟲草米,記憶,神經可塑性, | zh_TW |
| dc.subject.keyword | Depression,Ganoderma lucidum,Cordyceps militaris rice,memory,neuroplasticity, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201802032 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-09 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05641011-1.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
