Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新
dc.contributor.authorBo-Ting Luen
dc.contributor.author盧柏廷zh_TW
dc.date.accessioned2021-07-11T15:45:30Z-
dc.date.available2023-08-10
dc.date.copyright2018-08-10
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citation1. Furukawa, G.T., et al., Thermal properties of aluminum oxide from 0 to 1,200 K. Journal of Research of the National Bureau of Standards, 1956. 57(2): p. 67-82.
2. Rowthu, S., et al., Flexural strength evaluations and fractography analyses of slip cast mesoporous submicron alumina. Ceramics International, 2017.
3. Nicoletto, G., A. Tucci, and L. Esposito, The effect of microstructure on fracture toughness of polycrystalline alumina. Fatigue & Fracture of Engineering Materials & Structures, 1996. 19(1): p. 119-128.
4. Ćurković, L., et al. Hardness and fracture toughness of alumina ceramics. in 12. Savjetovanje o materijalima, tehnologijama, trenju i trošenju. 2007.
5. Penilla, E.H., Y. Kodera, and J.E. Garay, Blue–green emission in terbium‐doped alumina (Tb: Al2O3) transparent ceramics. Advanced Functional Materials, 2013. 23(48): p. 6036-6043.
6. Wei, G., Transparent ceramic lamp envelope materials. Journal of Physics D: Applied Physics, 2005. 38(17): p. 3057.
7. Apetz, R. and M.P. Bruggen, Transparent alumina: a light‐scattering model. Journal of the American Ceramic Society, 2003. 86(3): p. 480-486.
8. Yamashita, I., H. Nagayama, and K. Tsukuma, Transmission properties of translucent polycrystalline alumina. Journal of the American Ceramic Society, 2008. 91(8): p. 2611-2616.

9. Peelen, J. and R. Metselaar, Light scattering by pores in polycrystalline materials: Transmission properties of alumina. Journal of Applied Physics, 1974. 45(1): p. 216-220.
10. Azar, M., et al., Effect of initial particle packing on the sintering of nanostructured transition alumina. Journal of the European Ceramic Society, 2008. 28(6): p. 1121-1128.
11. Guillon, O., J. Rödel, and R.K. Bordia, Effect of Green‐State Processing on the Sintering Stress and Viscosity of Alumina Compacts. Journal of the American Ceramic Society, 2007. 90(5): p. 1637-1640.
12. Krell, A. and J. Klimke, Effects of the Homogeneity of Particle Coordination on Solid‐State Sintering of Transparent Alumina. Journal of the American Ceramic Society, 2006. 89(6): p. 1985-1992.
13. Binnemans, K., Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 2015. 295: p. 1-45.
14. Kodaira, C., et al., Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. Journal of Luminescence, 2003. 101(1-2): p. 11-21.
15. Chambers, M. and D. Clarke, Doped oxides for high-temperature luminescence and lifetime thermometry. Annual Review of Materials Research, 2009. 39: p. 325-359.
16. Bodišová, K., et al., Luminescent rare-earth-doped transparent alumina ceramics. Journal of the European Ceramic Society, 2016. 36(12): p. 2975-2980.
17. Santos, P.S., H.S. Santos, and S. Toledo, Standard transition aluminas. Electron microscopy studies. Materials Research, 2000. 3(4): p. 104-114.[1]
18. Lamouri, S., et al., Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017. 56(2): p. 47-54.
19. Shirai, T., et al., Structural properties and surface characteristics on aluminum oxide powders. 2010.
20. Rowthu, S., et al., Flexural strength evaluations and fractography analyses of slip cast mesoporous submicron alumina. Ceramics International, 2017.
21. Nicoletto, G., A. Tucci, and L. Esposito, The effect of microstructure on fracture toughness of polycrystalline alumina. Fatigue & Fracture of Engineering Materials & Structures, 1996. 19(1): p. 119-128
22. Ćurković, L., et al. Hardness and fracture toughness of alumina ceramics. in 12. Savjetovanje o materijalima, tehnologijama, trenju i trošenju. 2007.
23. Thomas, M.E., et al., Frequency and temperature dependence of the refractive index of sapphire. Infrared physics & technology, 1998. 39(4): p. 235-249.
24. Luo, Y.-r. and J. Kerr, Bond dissociation energies. CRC Handbook of Chemistry and Physics, 2012. 89: p. 89.
25. Milak, P., F. Minatto, and O. Montedo, Wear performance of alumina-based ceramics-a review of the influence of microstructure on erosive wear. Cerâmica, 2015. 61(357): p. 88-103.

26. Reboun, J., et al., Effect of copper-and silver-based films on alumina substrate electrical properties. Ceramics International, 2018. 44(3): p. 3497-3500.
27. Das, B. and C. Garman, Capacitance–voltage characterization of thin film nanoporous alumina templates. Microelectronics journal, 2006. 37(8): p. 695-699.
28. Coble, R.L., Transparent alumina and method of preparation. 1962, Google Patents.
29. Ikesue, A., et al., Fabrication and optical properties of high‐Performance polycrystalline Nd: YAG ceramics for solid‐State lasers. Journal of the American Ceramic Society, 1995. 78(4): p. 1033-1040.
30. Seeley, Z., et al., Transparent Lu2O3: Eu ceramics by sinter and HIP optimization. Optical Materials, 2011. 33(11): p. 1721-1726.
31. Morita, K., et al., Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scripta Materialia, 2008. 58(12): p. 1114-1117
32. Al-Sanabani, F.A., A.A. Madfa, and N.H. Al-Qudaimi, Alumina ceramic for dental applications: a review article. Amer J Mater Res, 2014. 1(1): p. 26-34.
33. Johnson, R., et al., Transparent polycrystalline ceramics: an overview. Transactions of the Indian Ceramic Society, 2012. 71(2): p. 73-85.
34. Hayashi, K., et al., Transmission optical properties of polycrystalline alumina with submicron grains. Materials Transactions, JIM, 1991. 32(11): p. 1024-1029.
35. Mizuta, H., et al., Preparation of High‐Strength and Translucent Alumina by Hot Isostatic Pressing. Journal of the American Ceramic Society, 1992. 75(2): p. 469-473.
36. HOTTA, Y., et al., Translucent alumina produced by slip-casting using a gypsum mold. Journal of the Ceramic Society of Japan, 2000. 108(1263): p. 1030-1033.
37. Krell, A., et al., Transparent sintered corundum with high hardness and strength. Journal of the American Ceramic Society, 2003. 86(1): p. 12-18.
38. Kim, B.-N., et al., Spark plasma sintering of transparent alumina. Scripta Materialia, 2007. 57(7): p. 607-610.
39. Liu, W., et al., Fabrication of injection moulded translucent alumina ceramics via pressureless sintering. Advances in Applied Ceramics, 2011. 110(4): p. 251-254.
40. Drdlikova, K., et al., Luminescent Eu3+-doped transparent alumina ceramics with high hardness. Journal of the European Ceramic Society, 2017. 37(14): p. 4271-4277.
41. Mao, X., et al., Transparent polycrystalline alumina ceramics with orientated optical axes. Journal of the American Ceramic Society, 2008. 91(10): p. 3431-3433.
42. Filatova, E.O. and A.S. Konashuk, Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. The Journal of Physical Chemistry C, 2015. 119(35): p. 20755-20761.
43. Koo, J., et al., Effect of grain size on transmittance and mechanical strength of sintered alumina. Materials Science and Engineering: A, 2004. 374(1-2): p. 191-195.

44. Spriggs, R., J. Mitchell, and T. Vasilos, Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size. Journal of the American Ceramic Society, 1964. 47(7): p. 323-327.
45. Monteiro, M.A.F., et al., Photoluminescence behavior of Eu3+ ion doped into γ-and α-alumina systems prepared by combustion, ceramic and Pechini methods. Microporous and Mesoporous Materials, 2008. 108(1-3): p. 237-246.
46. Drdlíková, K., et al., Luminescent Er3+ doped transparent alumina ceramics. Journal of the European Ceramic Society, 2017. 37(7): p. 2695-2703.
47. Lin, Y.-C., et al., LED and optical device packaging and materials, in Materials for advanced packaging. 2009, Springer. p. 629-680.
48. Niesz, D.E., A review of ceramic powder compaction. KONA Powder and Particle Journal, 1996. 14: p. 44-51.
49. Lange, F.F., Powder processing science and technology for increased reliability. Journal of the American Ceramic Society, 1989. 72(1): p. 3-15.
50. Zheng, J. and J.S. Reed, Particle and granule parameters affecting compaction efficiency in dry pressing. Journal of the American Ceramic Society, 1988. 71(11).
51. Krell, A. and P. Blank, The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina. Journal of the European Ceramic Society, 1996. 16(11): p. 1189-1200.
52. Hotta, Y., T. Banno, and K. Oda, Characteristics of translucent alumina produced by slip casting method using gypsum mold. Journal of materials science, 2002. 37(4): p. 855-863.
53. Mata-Osoro, G., J.S. Moya, and C. Pecharroman, Transparent alumina by vacuum sintering. Journal of the European Ceramic Society, 2012. 32(11): p. 2925-2933.
54. FENNELLY, T.J. and J.S. REED, Mechanics of pressure slip casting. Journal of the American Ceramic Society, 1972. 55(5): p. 264-268.
55. Echeberria, J., et al., Sinter-HIP of α-alumina powders with sub-micron grain sizes. Journal of the European Ceramic Society, 2002. 22(11): p. 1801-1809
56. Chou, K.S. and L.J. Lee, Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry. Journal of the American Ceramic Society, 1989. 72(9): p. 1622-1627.
57. Kukolev, G. and A. Karaulov, The properties of water suspensions of commercial alumina and rational conditions for slip casting. Refractories, 1963. 4(3-4): p. 184-191.
58. Shin, Y.-J., C.-C. Su, and Y.-H. Shen, Dispersion of aqueous nano-sized alumina suspensions using cationic polyelectrolyte. Materials Research Bulletin, 2006. 41(10): p. 1964-1971.
59. Ewais, E.M.M., Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent. Journal of the Australasian Ceramic Society, 2005. 41(1): p. 36-43.
60. Davies, J. and J. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. Journal of the European ceramic Society, 2000. 20(10): p. 1539-1553.
61. Michálková, M., K. Ghillányová, and D. Galusek, The influence of solid loading in suspensions of a submicrometric alumina powder on green and sintered pressure filtrated samples. Ceramics International, 2010. 36(1): p. 385-390.
62. Morita, K., et al., Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II-Effect of SPS and loading temperatures. Journal of the European Ceramic Society, 2017.
63. Atkinson, H. and S. Davies, Fundamental aspects of hot isostatic pressing: an overview. Metallurgical and Materials Transactions A, 2000. 31(12): p. 2981-3000.
64. Mendelson, M.I., Average grain size in polycrystalline ceramics. Journal of the American Ceramic society, 1969. 52(8): p. 443-446
65. Xie, Z., et al., Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder. Ceramics international, 2004. 30(2): p. 219-224.
66. Coble, R.L., Sintering crystalline solids. I. Intermediate and final state diffusion models. Journal of applied physics, 1961. 32(5): p. 787-792.
67. Roosen, A. and H. BOWEN, Influence of various consolidation techniques on the green microstructure and sintering behavior of alumina powders. Journal of the American Ceramic Society, 1988. 71(11): p. 970-977.
68. Sis, H. and S. Chander, Pressure filtration of dispersed and flocculated alumina slurries. Minerals & Metallurgical Processing, 2000. 17(1): p. 41-48.
69. Kaplan, W.D., et al., Ca Segregation to Basal Surfaces in α‐Alumina. Journal of the American Ceramic Society, 1995. 78(10): p. 2841-2844.
70. Altay, A. and M.A. Gülgün, Microstructural Evolution of Calcium‐Doped α‐Alumina. Journal of the American Ceramic Society, 2003. 86(4): p. 623-29.
71. Lee, J.-S., Preparation of EuAlO3 powders by molten salt method. JOURNAL OF CERAMIC PROCESSING RESEARCH, 2017. 18(5): p. 385-388.

72. Stuer, M., et al., Nanopore characterization and optical modeling of transparent polycrystalline alumina. Advanced Functional Materials, 2012. 22(11): p. 2303-2309.
73. Stanciu, L., V. Kodash, and J. Groza, Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al 2 O 3 and MoSi 2 powders. Metallurgical and Materials Transactions A, 2001. 32(10): p. 2633-2638.
74. Chen, I.-W. and X.-H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature, 2000. 404(6774): p. 168.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79119-
dc.description.abstract多晶透光氧化鋁由於其機械性質好、化學及溫度穩定性高,多應用在極端環境,如武裝玻璃、高溫爐視窗等。此外,若在其中作摻雜,則可拓寬其應用,有潛力發展成為雷射介質、閃爍體及發光二極體基板。本研究中,採用不同的成型法(乾壓成形、石膏模注漿成形及壓濾成形),搭配空氣燒結,製備多晶透光氧化鋁,並比較製程對材料燒結行為、微結構以及直線透光度的影響。實驗結果顯示,由壓濾成形的生胚由於堆疊較均勻,在燒結後擁有最佳的透光度;而使用乾壓成形的生胚,生胚密度較低,且內部可觀察到許多裂縫,並在燒結後無法完全去除孔洞,因此透光性不好;以石膏模注漿成形之試片,推測由於模具碎片剝落並滲入生胚,導致燒結時發生異常晶粒成長,因此透光度也不佳。本研究進一步以壓濾成形法製備摻雜三價銪之透光多晶氧化鋁。發現所需緻密化之燒結溫度上升,且在摻雜量為0.1 at%、於1400C燒結的試片中,可觀察到EuAlO3的二次相析出。摻雜的試片透光度較未摻雜之多晶氧化鋁直線透光度低,且隨著摻雜量上升而下降。zh_TW
dc.description.abstractOptical polycrystalline alumina (PCA) is a potential ceramic for the applications in harsh environmental conditions, such as armor window and window for high temperature furnace. It is mainly due to its good mechanical properties, chemical stability and thermal stability. By doping elements, the application can be further extended. In the present study, various forming methods such as die pressing, slip casting with a gypsum mold, and pressure filtration are adopted to prepare the green compacts. The results indicate that the specimens formed by pressure filtration exhibits optimum in-line transmission after sintering in air. Such result can be related to the uniform packing of green compacts. On the other hand, for the specimens formed by die pressing, some cracks are observed in the green compacts, and residual pores still exist after sintering. Debris from the gypsum mold is speculated to induce abnormal grain growth of alumina. Such abnormal grains can only be observed in the specimens formed by slip casting with a gypsum mold. As a result, the specimens formed by die pressing and slip casting are opaque after sintering. Besides, Eu3+ doped PCA is also prepared by pressure filtration. The sintering temperature required to densify the Eu3+ doped PCA specimens is higher. Second phase precipitates of EuAlO3 are detected in the specimen doped with 0.1 at% Eu3+. In-line transmission thus decreases with increasing doping levels.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:45:30Z (GMT). No. of bitstreams: 1
ntu-107-R05527031-1.pdf: 8792933 bytes, checksum: bce85fe2bc44ba604fa423a3f121a207 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Literature survey 3
2.1 α-Al2O3 (alpha alumina) 3
2.2 Optical polycrystalline alumina (PCA) 6
2.2.1 Transparent ceramics 6
2.2.2 Transmission mechanism of PCA 9
2.2.3 Rare-earth doped PCA 12
2.3 Processing of optical PCA 15
2.3.1 Forming methods 15
2.3.2 Slurry preparation 17
2.3.3 Post-sintering HIP 20
Chapter 3 Experimental Procedures 23
3.1 Starting materials 23
3.1.1 Alumina powder 23
3.1.2 Dispersant 23
3.1.3 Europium dopant 23
3.2 Forming process 24
3.2.1 Die pressing 24
3.2.2 Slip casting with a gypsum mold 24
3.2.3 Pressure filtration 25
3.3 Sintering 26
3.4 Characterization 32
3.4.1 Powder properties 32
3.4.2 Slurry fluidity 32
3.4.3 Green compact properties 32
3.4.4 Dilatometer analysis 33
3.4.5 Microstructure observation of the sintered specimens 33
3.4.6 Relative density 34
3.4.7 Grain size measurement 34
3.4.8 Phase identification 35
3.4.9 In-line transmission 35
Chapter 4 Results 36
4.1 Milling of powder 36
4.2 Preparation of slurry 39
4.3 Properties of green compacts 42
4.3.1 Die pressing 42
4.3.2 Slip casting with a gypsum mold 43
4.3.3 Pressure filtration 43
4.4 Sintering kinetics 45
4.5 Relative density of the sintered specimens 48
4.6 Microstructure of the sintered specimens 49
4.7 Grain size measurement 59
4.8 In-line transmission 60
4.9 Phase analysis 62
4.10 Europium (Ⅲ) doped PCA 63
4.10.1 Sintering kinetics 63
4.10.2 Microstructure of the sintered specimens 64
4.10.3 Relative density and grain size 72
4.10.4 In-line transmission 73
4.10.5 Phase analysis 75
Chapter 5 Discussions 77
5.1 Rheological properties 77
5.2 Green compacts 81
5.3 Sintering behavior and microstructure 83
5.3.1 Pure PCA 83
5.3.2 Europium (Ⅲ) doped PCA 86
5.4 In-line transmission 89
5.4.1 Pure PCA 89
5.4.2 Europium (Ⅲ) doped PCA 91
5.5 General discuss and future work 93
Chapter 6 Conclusions 94
REFERENCE 96
LIST OF FIGURES
Fig. 2.1 α-Al2O3 (also called corundum structure) and its top view. The small black dots represent aluminum cations, while the large gray spheres represent oxygen anions. [19] 4
Fig. 2.2 The schematic of the transmission when light passes through an alumina specimen. 12
Fig. 2.3 The schematic of the pressure filtration process for forming a green compact. 17
Fig. 2.4 The schematic of the relation between the dispersant amount and the dispersion of the particles in the suspension. 19
Fig. 2.5 The pressurized gas atoms act like “hot forges” and collide with the surface of the specimen to generate applied pressure during HIP. 21
Fig. 3.1 Flow chart for the specimens formed by die pressing 27
Fig. 3.2 Flow chart for the specimens formed by slip casting with a gypsum mold. 28
Fig. 3.3 Flow chart for the specimens formed by pressure filtration. 29
Fig. 3.4 Dimensions of the gypsum mold. 30
Fig. 3.5 Mold for the pressure filtration process. 30
Fig. 3.6 Pressure profile for the pressure filtration process. 31
Fig. 3.7 Schematic of the in-line transmission measurement. 35
Fig. 4.1 Morphology of the alumina particles (a)before and (b)after planetary ball milling for 4 hours 37
Fig. 4.2 Morphology of the alumina agglomerates (a)before (b)after planetary ball milling for 4 hours 37
Fig. 4.3 Particle size distribution of the alumina particles after planetary ball milling for 4 hours. 38
Fig. 4.4 Apparent viscosity of the slurry with a solid content of 72.6 wt% by adding different amount of D-305. The shear rate used was 425 s-1. 40
Fig. 4.5 Apparent viscosity of the slurry with a solid content of 76.5 wt% by adding different amount of D-305. The shear rate used was 425 s-1. 40
Fig. 4.6 Apparent viscosity of the slurries with a fixed amount of D-305 at 1.75 wt%. The shear rate ranged from 51 s-1 to 425 s-1. 41
Fig. 4.7 Fracture surface of the green compacts formed by die pressing. 42
Fig. 4.8 Fracture surface of the green compacts formed by slip casting with a gypsum mold. 43
Fig. 4.9 Fracture surface of the green compacts formed by pressure filtration under a pressure of (a)0.24 MPa, (b)0.31 MPa, and (c)0.46 MPa. 44
Fig. 4.10 Linear shrinkage and the shrinkage rate of the specimen formed by die pressing during the heating stage up to 1500oC. 46
Fig. 4.11 Linear shrinkage and the shrinkage rate of the specimen formed by slip casting during the heating stage up to 1500oC. 46
Fig. 4.12 Linear shrinkage of the specimens formed by pressure filtration under a pressure of 0.24 MPa, 0.31 MPa, and 0.46 MPa during the heating stage up to 1400oC. 47
Fig. 4.13 Shrinkage rate of the specimens formed by pressure filtration under a pressure of 0.24 MPa, 0.31 MPa, and 0.46 MPa during the heating stage up to 1400oC. 47
Fig. 4.14 Relative density of the specimens formed by die pressing, slip casting, and pressure filtration. 48
Fig. 4.15 Fracture surface of the specimens formed by die pressing sintered at (a)1350oC, (b)1400oC, (c)1450oC, and (d)1500oC. 51
Fig. 4.16 Thermally etched surface of the specimens formed by die pressing sintered at (a)1350oC, (b)1400oC, (c)1450oC, and (d)1500oC. 52
Fig. 4.17 Some cracks and defects are found on the surface of the sintered specimens formed by die pressing. 53
Fig. 4.18 Fracture surface of the specimens formed by slip casting sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 54
Fig. 4.19 Thermally etched surface of the sintered specimens formed by slip casting sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 55
Fig. 4.20 (a)Second electron image and (b)back scattered electron image of the polished surface of the sintered bulks formed by slip casting. 56
Fig. 4.21 Fracture surface of the specimens formed by pressure filtration sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 57
Fig. 4.22 Thermally etched surface of the sintered specimens formed by pressure filtration sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 58
Fig. 4.23 Average grain size of the specimens formed by die pressing, slip casting, and pressure filtration. 59
Fig. 4.24 In-line transmission of the sintered specimens formed by die pressing. 60
Fig. 4.25 In-line transmission of the sintered specimens formed by slip casting. 61
Fig. 4.26 In-line transmission of the sintered specimens formed by pressure filtration. 61
Fig. 4.27 XRD patterns of the sintered specimens formed by pressure filtration 62
Fig. 4.28 Linear shrinkage of PA, 005E, and 010E during the heating up stage to 1400oC. 63
Fig. 4.29 Fracture surface of the 050E specimens sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 65
Fig. 4.30 Fracture surface of the 001E specimens sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 66
Fig. 4.31 Thermally etched surface of the 005E specimens sintered at (a)1300oC, (b)1350C, and (c)1400C. 67
Fig. 4.32 Thermally etched surface of the 010E specimens sintered at (a)1300oC, (b)1350oC, and (c)1400oC. 68
Fig. 4.33 Fracture surface of the 005E specimens sintered at (a)1300oC, (b)1350oC, and (c)1400oC in the BSE mode. 69
Fig. 4.34 Fracture surface of the 010E specimens sintered at (a)1300oC, (b)1350oC, and (c)1400oC in the BSE mode. 70
Fig. 4.35 The non-uniform precipitates observed on the fracture surface of the 010E specimen sintered at 1400oC. 71
Fig. 4.36 Relative density of PA, 005E, and 010E specimens after sintering. 72
Fig. 4.37 Average grain size of PA, 005E, and 010E specimens after sintering. 73
Fig. 4.38 In -line transmission of the PA, 005E, 010E specimens sintered at 1350oC. 74
Fig. 4.39 In-line transmission of the PA, 005E, 010E specimens sintered at 1400oC. 74
Fig. 4.40 XRD patterns of PA, 005E, and 010E specimen sintered at 1350oC. 75
Fig. 4.41 XRD patterns of PA, 005E, and 010E specimen sintered at 1400oC. 76
Fig. 5.1 The pH value of the alumina suspension with a solid content of 72.6wt% versus various dispersant amounts. 79
Fig. 5.2 The zeta potential value of the alumina suspension versus various pH values. 80
Fig. 5.3 The predicted configuration of the ammonium polyacrylate polymers absorbed on the alumina particles [60]. 80
Fig. 5.4 Relative density of the specimens formed by die pressing, slip casting, and pressure filtration during the heating up stage. 84
Fig. 5.5 AGG and elongated grains (a)in the specimens formed by slip casting then sintered at 1350oC in the present study, and (b)in the specimens doped with 344ppm Ca2+ and sintered at 1400oC in the study by Arzu Altay [70]. 85
Fig. 5.6 Grain size distribution of the specimen formed by slip casting then sintered at 1350°C. 85
Fig. 5.7 Grain size distribution of the specimen formed by slip casting then sintered at 1400°C. 86
Fig. 5.8 (a)SE image and the (b)BSE image of the fracture surface of the 005E specimen sintered at 1450°C. (c)SE image and the (d)BSE image of the fracture surface of the 010E specimen sintered at 1450°C. 88
Fig. 5.9 A summary on relative density and average grain size of pure PCA formed by die pressing, slip casting, and pressure filtration. 90
Fig. 5.10 Second phase precipitates observed (a)in the 010E specimen in the present study, and (b)in the study by K. Drdlíková [46] in his nano-Er2O3 doped PCA specimen. 92
LIST OF TABLES
Table 2.1 Some properties of α-Al2O3 [17, 20-23] 5
Table 2.2 A review list of optical PCA by different methods [34-40]. 8
Table 3.1 Information of the dispersant D-305 23
Table 3.2 Notation of the specimens formed by pressure filtration. 31
Table 4.1 EDS analysis of the inclusion (pointed by an arrow) in Fig. 4.19b. 58
Table 4.2 EDS analysis of the precipitates observed in the 010E specimen. 71
dc.language.isoen
dc.subject製程zh_TW
dc.subject壓濾成形zh_TW
dc.subject注漿成形zh_TW
dc.subject透光陶瓷zh_TW
dc.subject多晶氧化鋁zh_TW
dc.subjectprocessingen
dc.subjectpressure filtrationen
dc.subjectslip castingen
dc.subjectoptical ceramicsen
dc.subjectpolycrystalline aluminaen
dc.title以壓濾成形法製備透光多晶氧化鋁zh_TW
dc.titlePreparation of translucent polycrystalline alumina by a pressure filtration techniqueen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃啟原,施劭儒,劉哲原,許沛衣
dc.subject.keyword多晶氧化鋁,透光陶瓷,製程,注漿成形,壓濾成形,zh_TW
dc.subject.keywordpolycrystalline alumina,optical ceramics,processing,slip casting,pressure filtration,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201801948
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2023-08-10-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05527031-1.pdf
  未授權公開取用
8.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved