請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宗霖(Jay Shieh) | |
| dc.contributor.author | Bo-Ting Lin | en |
| dc.contributor.author | 林柏廷 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:25:26Z | - |
| dc.date.available | 2023-12-26 | |
| dc.date.copyright | 2018-12-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-12-21 | |
| dc.identifier.citation | [1] Müller, J., et al. (2012). Ferroelectricity in simple binary ZrO2 and HfO2. Nano letters, 12(8), 4318-4323.
[2] Zhao, X., & Vanderbilt, D. (2002). First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Physical Review B, 65(23), 233106. [3] Reyes-Lillo, S. E., Garrity, K. F., & Rabe, K. M. (2014). Antiferroelectricity in thin-film ZrO2 from first principles. Physical Review B, 90(14), 140103. [4] Fan, Z., et al. (2016). Ferroelectricity emerging in strained (111)-textured ZrO2 thin films. Applied Physics Letters, 108(1), 012906. [5] Zhao, C., Roebben, G., Heyns, M., & Van der Biest, O. (2002). Crystallisation and tetragonal-monoclinic transformation in ZrO2 and HfO2 dielectric thin films. Key Engineering Materials, 206, 1285-1288. [6] Lu, Y. W., Shieh, J., & Tsai, F. Y. (2016). Induction of ferroelectricity in na-noscale ZrO2/HfO2 bilayer thin films on Pt/Ti/SiO2/Si substrates. Acta Materi-alia, 115, 68-75. [7] Wikipedia contributors. (2018, August 4). Cubic crystal system. In Wikipedia, The Free Encyclopedia. Retrieved October 4, 2018, from https://en.wikipedia.org/w/index.php?title=Cubic_crystal_system&oldid=853357677 [8] Villafruela, X. V. Piezoelectric and ferroelectric materials. In Explorer Materials, WordPress. Retrieved October 4, 2018, from https://explorermaterials.wordpress.com/basic-concepts/piezoelectric-and-ferroelectric-materials [9] Bokov, A. A., & Ye, Z. G. (2006). Recent progress in relaxor ferroelectrics with perovskite structure. In Frontiers of Ferroelectricity (pp. 31-52). Springer US. [10] Muralt, P. (2000). Ferroelectric thin films for micro-sensors and actuators: a re-view. Journal of micromechanics and microengineering, 10(2), 136. [11] Scott, J. F., & De Araujo, C. A. P. (1989). Ferroelectric memo-ries. Science, 246(4936), 1400-1405. [12] Kohlstedt, H., et al. (2005). Current status and challenges of ferroelectric memory devices. Microelectronic Engineering, 80, 296-304. [13] Chanthbouala, A., et al. (2012). Solid-state memories based on ferroelectric tunnel junctions. Nature nanotechnology, 7(2), 101. [14] Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S., & Tsymbal, E. Y. (2005). Giant electroresistance in ferroelectric tunnel junctions. Physical Review Letters, 94(24), 246802. [15] Kohlstedt, H., Pertsev, N. A., Contreras, J. R., & Waser, R. (2005). Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Physical Review B, 72(12), 125341. [16] Salahuddin, S., & Datta, S. (2008). Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano letters, 8(2), 405-410. [17] Zhirnov, V. V., & Cavin, R. K. (2008). Nanoelectronics: Negative capacitance to the rescue? Nature Nanotechnology, 3(2), 77. [18] Li, K. S., et al. Sub-60mV-swing negative-capacitance FinFET without hysteresis. Electron Devices Meeting (IEDM), 2015 IEEE International (pp. 22-6). IEEE. [19] Eerenstein, W., Mathur, N. D., & Scott, J. F. (2006). Multiferroic and magnetoe-lectric materials. nature, 442(7104), 759. [20] George, S. M. (2009). Atomic layer deposition: an overview. Chemical re-views, 110(1), 111-131. [21] Shih, H. Y., et al. (2017). Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Scientific reports, 7, 39717. [22] Rödel, J., Jo, W., Seifert, K. T., Anton, E. M., Granzow, T., & Damjanovic, D. (2009). Perspective on the Development of Lead‐free Piezoceramics. Journal of the American Ceramic Society, 92(6), 1153-1177. [23] Shieh, J., Wu, K. C., & Chen, C. S. (2007). Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta materialia, 55(9), 3081-3087. [24] Shieh, J., Lin, Y. C., & Chen, C. S. (2009). Intricate straining of manganese-doped (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Journal of Physics D: Applied Physics, 43(2), 025404. [25] Kwei, G. H., Lawson, A. C., Billinge, S. J. L., & Cheong, S. W. (1993). Structures of the ferroelectric phases of barium titanate. The Journal of Physical Chemis-try, 97(10), 2368-2377. [26] Leger, J. M., Tomaszewski, P. E., Atouf, A., & Pereira, A. S. (1993). Pres-sure-induced structural phase transitions in zirconia under high pressure. Physical Review B, 47(21), 14075. [27] Navrotsky, A. (2005). Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. Journal of Materials Chemis-try, 15(19), 1883-1890. [28] Polakowski, P., & Müller, J. (2015). Ferroelectricity in undoped hafnium ox-ide. Applied Physics Letters, 106(23), 232905. [29] Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U., & Böttger, U. (2011). Ferro-electricity in hafnium oxide thin films. Applied Physics Letters, 99(10), 102903. [30] Müller, J., et al. (2011). Ferroelectricity in yttrium-doped hafnium oxide. Journal of Applied Physics, 110(11), 114113. [31] Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., & Mikolajick, T. (2012). Incipient ferroelectricity in Al‐doped HfO2 thin films. Advanced Functional Materials, 22(11), 2412-2417. [32] Mueller, S., Adelmann, C., Singh, A., Van Elshocht, S., Schroeder, U., & Mikola-jick, T. (2012). Ferroelectricity in Gd-doped HfO2 thin films. ECS Journal of Sol-id State Science and Technology, 1(6), N123-N126. [33] Shimizu, T., et al. (2015). Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Applied Physics Letters, 106(11), 112904. [34] Zhou, D., et al. (2013). Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Applied Physics Letters, 103(19), 192904. [35] Zarubin, S., Suvorova, E., Spiridonov, M., Negrov, D., Chernikova, A., Markeev, A., & Zenkevich, A. (2016). Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Fer-roelectric and structural properties. Applied Physics Letters, 109(19), 192903. [36] Müller, J., et al. (2012, June). Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. In VLSI Technology (VLSIT), 2012 Symposium on (pp. 25-26). IEEE. [37] Moriwake, H., et al. (2014). Ferroelectricity in wurtzite structure simple chalco-genide. Applied Physics Letters, 104(24), 242909. [38] Konishi, A., et al. (2016). Mechanism of polarization switching in wurtz-ite-structured zinc oxide thin films. Applied Physics Letters, 109(10), 102903. [39] Onodera, A., Tamaki, N., Kawamura, Y., Sawada, T., & Yamashita, H. (1996). Dielectric activity and ferroelectricity in piezoelectric semiconductor Li-doped ZnO. Japanese journal of applied physics, 35(9S), 5160. [40] Sawada, S., Hirotsu, S., Iwamura, H., & Shiroishi, Y. (1973). A Ferroelectric Type of Hysteresis Loop Observed in BeO. Journal of the Physical Society of Ja-pan, 35(3), 946-946. [41] Cohen, R. E. (1992). Origin of ferroelectricity in perovskite oxides. Nature, 358(6382), 136. [42] Bernardini, F., Fiorentini, V., & Vanderbilt, D. (1997). Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 56(16), R10024. [43] He, B. B. (2011). Two-dimensional X-ray diffraction. John Wiley & Sons. [44] Shen, L., et al. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459. [45] Zimmermann, T., Deen, D., Cao, Y., Simon, J., Fay, P., Jena, D., & Xing, H. G. (2008). AlN/GaN insulated-gate HEMTs with 2.3 A/mm output current and 480 mS/mm transconductance. IEEE Electron Device Letters, 29(7), 661-664. [46] Mishra, U. K., Parikh, P., & Wu, Y. F. (2002). AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings of the IEEE, 90(6), 1022-1031. [47] Taniyasu, Y., Kasu, M., & Makimoto, T. (2006). An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441(7091), 325. [48] Ruiz, E., Alvarez, S., & Alemany, P. (1994). Electronic structure and properties of AlN. Physical Review B, 49(11), 7115. [49] Piazza, G., Stephanou, P. J., & Pisano, A. P. (2006). Piezoelectric aluminum ni-tride vibrating contour-mode MEMS resonators. Journal of Microelectromechan-ical systems, 15(6), 1406-1418. [50] Karabalin, R. B., et al. (2009). Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Applied Physics Letters, 95(10), 103111. [51] Elfrink, R., Kamel, T. M., Goedbloed, M., Matova, S., Hohlfeld, D., Van Andel, Y., & Van Schaijk, R. (2009). Vibration energy harvesting with aluminum ni-tride-based piezoelectric devices. Journal of Micromechanics and Microengi-neering, 19(9), 094005. [52] Dubois, M. A., & Muralt, P. (1999). Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Applied Physics Let-ters, 74(20), 3032-3034. [53] Smorchkova, I. P., et al. (2001). AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecu-lar-beam epitaxy. Journal of Applied Physics, 90(10), 5196-5201. [54] Smorchkova, I. P., et al. (2000). Two-dimensional electron-gas AlN/GaN hetero-structures with extremely thin AlN barriers. Applied Physics Letters, 77(24), 3998-4000. [55] Ohmi, S. I., Yoshihara, M., Okamoto, T., Tokumitsu, E., & Ishiwara, H. (1996). Electrical properties of ferroelectric gate HEMT structures. Japanese journal of applied physics, 35(2S), 1254. [56] Chen, P. G., Wei, Y. T., Tang, M., & Lee, M. H. (2014). Experimental demonstra-tion of ferroelectric gate-stack AlGaN/GaN-on-Si MOS-HEMTs with voltage am-plification for power applications. IEEE Transactions on Electron Devices, 61(8), 3014-3017. [57] Evans, J. T. (2011, March). Characterizing ferroelectric materials. In Proc. IEEE ISAF (pp. 1-123). [58] Chih Lin, M., Nien, L. W., Chen, C. H., Lee, C. W., & Chen, M. J. (2012). Surface enhanced Raman scattering and localized surface plasmon resonance of nanoscale ultrathin films prepared by atomic layer deposition. Applied Physics Let-ters, 101(2), 023112. [59] Ko, C. T., et al. (2015). Atomic-layer-deposited silver and dielectric nanostruc-tures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films. Nanotechnology, 26(26), 265702. [60] Ramesh, R., Lee, J., Sands, T., Keramidas, V. G., & Auciello, O. (1994). Oriented ferroelectric La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer. Applied physics let-ters, 64(19), 2511-2513. [61] Akai, D., Hirabayashi, K., Yokawa, M., Sawada, K., & Ishida, M. (2004). Epitaxi-al growth of Pt (001) thin films on Si substrates using an epitaxial γ-Al2O3 (001) buffer layer. Journal of crystal growth, 264(1-3), 463-467. [62] Lowther, J. E., Dewhurst, J. K., Leger, J. M., & Haines, J. (1999). Relative stabil-ity of ZrO2 and HfO2 structural phases. Physical Review B, 60(21), 14485-14488. [63] Hyuk Park, M., Joon Kim, H., Jin Kim, Y., Lee, W., Moon, T., & Seong Hwang, C. (2013). Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Applied Physics Let-ters, 102(24), 242905. [64] Kisi, E. H., Howard, C. J., & Hill, R. J. (1989). Crystal structure of orthorhombic zirconia in partially stabilized zirconia. Journal of the American Ceramic Socie-ty, 72(9), 1757-1760. [65] Liu, M., & Kim, H. K. (2004). Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Applied Physics Letters, 84(2), 173-175. [66] Lee, S. H., Yoon, K. H., Cheong, D. S., & Lee, J. K. (2003). Relationship between residual stress and structural properties of AlN films deposited by RF reactive sputtering. Thin Solid Films, 435(1-2), 193-198. [67] Oliveira, J. C., Cavaleiro, A., & Vieira, M. T. (2002). Influence of Al (Er) inter-layer on the mechanical properties of AlN (Er) coatings. Surface and Coatings Technology, 151, 466-470. [68] Duan, Y., Qin, L., & Liu, H. (2016). Different evolutionary pathways from B4 to B1 phase in AlN and InN: metadynamics investigations. Journal of Physics: Condensed Matter, 28(20), 205403. [69] Qin, L., Duan, Y., Shi, H., Shi, L., & Tang, G. (2012). Hybrid density functional theory studies of AlN and GaN under uniaxial strain. Journal of Physics: Con-densed Matter, 25(4), 045801. [70] Harima, H. (2002). Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter, 14(38), R967. [71] Davydov, V. Y., et al. (1998). Phonon dispersion and Raman scattering in hexag-onal GaN and AlN. Physical Review B, 58(19), 12899. [72] De Wolf, I. (1996). Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semiconductor Science and Technology, 11(2), 139. [73] Darakchieva, V., et al. (2004). Strain-related structural and vibrational properties of thin epitaxial AlN layers. Physical Review B, 70(4), 045411. [74] Wang, C. M., Azad, S., Thevuthasan, S., Shutthanandan, V., McCready, D. E., & Peden, C. H. (2004). Distortion of the oxygen sublattice in pure cu-bic-ZrO2. Journal of materials research, 19(5), 1315-1319. [75] Cheng, P. H. (2018). Atomic layer technologies for ferroelectric negative capac-itance and channel engineering in advanced nanoscale transistors. PhD disserta-tion. National Taiwan University, Taiwan. [76] Greco, G., Iucolano, F., & Roccaforte, F. (2017). Review of technology for nor-mally-off HEMTs with p-GaN gate. Materials Science in Semiconductor Pro-cessing. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78869 | - |
| dc.description.abstract | 鐵電材料內部存在自發性的電極化,其極化可藉由外加電場的作用下被反轉,當電場歸零時仍保有殘餘極化量,並且具有壓電特性,因此被廣泛地應用於壓電元件、非揮發性記憶體、負電容電晶體等電子元件中。現今常見的傳統鐵電材料大多為鈣鈦礦結構的鋯鈦酸鉛,然而鈣鈦礦結構與矽的晶體結構匹配性差,因此在電子元件微型化的趨勢下,傳統鐵電材料在半導體工業的應用逐漸受到限制。近年來,以原子層沉積技術製造的二氧化鉿基鐵電奈米薄膜逐漸受到重視,其和矽的晶體結構有高度的匹配性,且為簡單的二元化合物,由於此種薄膜鐵電性的發現,使得鐵電材料在半導體工業的發展得以延續。
目前以原子層沉積技術成長的二元化合物鐵電奈米薄膜只有一種:二氧化鉿基鐵電奈米薄膜,其中包含了氧化鉿鋯鐵電奈米薄膜。本實驗室以遠程電漿增強型原子層沉積技術,首次成功製備出鐵電表現良好的氧化鉿鋯鐵電奈米薄膜。然而在氧化鉿鋯薄膜的研究中,二氧化鉿基鐵電奈米薄膜的缺點亦被發現,即需要額外的製程才能使其具備良好的鐵電性,例如後續的高溫退火處理和摻雜等,這會使材料製備的成本提高且有熱積存的問題產生。為了解決這些問題,本研究亦成功開發了兩種新穎的鐵電奈米薄膜:二氧化鋯與氮化鋁,它們不僅不需要後續高溫退火處理及摻雜,且與現今半導體工業的製程兼容,此外,它們也是簡單的二元化合物。 未摻雜的二氧化鋯奈米薄膜在不進行後續退火的情況下,首次出現顯著且穩定的鐵電性,此鐵電薄膜具有高達12 μCcm-2的殘餘極化量及鐵電結晶相。本研究使用遠程電漿增強型原子層沉積技術,成長二氧化鋯奈米薄膜在鉑電極上,藉由高解析穿透式電子顯微鏡及低掠角X光繞射相鑑定分析,證實了二氧化鋯薄膜中存在非中心對稱空間群Pbc21的鐵電Orthorhombic相。 本研究亦使用原子層沉積技術與本實驗室發展出的原子層退火技術,在300 °C的低溫下將氮化鋁奈米薄膜磊晶在氮化鎵上,形成氮化鋁/氮化鎵的異質結構。在此異質結構中,氮化鋁薄膜的鐵電性首次在電滯曲線的量測中被觀察到,當在異質結構上施加外部電壓時,氮化鋁薄膜內之自發性電極化可以被旋轉。此外,氮化鋁薄膜內的極化旋轉,可以操縱氮化鋁/氮化鎵異質結構的位能障,使此異質結構的電阻可以被調整。基於表面增強拉曼光譜、掃描穿透式電子顯微鏡之高角度暗場影像技術與X光繞射分析之倒置空間圖的結果,歸納出異質結構中的氮化鋁薄膜具有鐵電性的原因:氮化鋁薄膜受到來自氮化鎵的平面拉伸應力,產生鐵電高壓相,亦造成氮化鋁薄膜中的氮、鋁離子間距改變,使材料內部之自發性極化量增加,且容易在外部電壓的施加下被反轉。 由於二氧化鋯與氮化鋁奈米薄膜鐵電性的發現,此兩種薄膜未來預期可有效應用於非揮發性記憶體、負電容電晶體、高電子遷移率電晶體等電子元件中。在發現與鑑定二氧化鋯與氮化鋁薄膜鐵電性的過程,本實驗室建立了一套開發新型鐵電薄膜與研究鐵電性質的方法,供後人參考,以便將來發現更多更具潛力的新穎鐵電材料。 | zh_TW |
| dc.description.abstract | Hf0.5Zr0.5O2 (HZO) ferroelectric nanoscale thin films with significant and tunable ferroelectric properties were prepared by remote plasma atomic layer deposition (RP-ALD) in our laboratory for the first time. However, the disadvantages of HfO2-based ferroelectric thin films were also found in this study. They require additional processes to induce ferroelectricity, such as subsequent high-temperature annealing and doping. To solve these problems, this research has also successfully developed two novel ferroelectric nanoscale thin films – ZrO2 and AlN. Both of these Si-compatible films do not require post-annealing and doping to induce their ferroelectricity, which is highly beneficial to the application of the films in non-volatile memories and ultralow-power nanoelectronics.
Large stable ferroelectricity in nanoscale undoped ZrO2 thin films prepared without post-annealing has been demonstrated for the first time. Remanent polarizations up to 12 μCcm−2 were obtained in the as-deposited ZrO2 thin films prepared by RP-ALD at 300 °C substrate temperature on the Pt electrode. The existence of the ferroelectric orthorhombic phase with non-centrosymmetric space group Pbc21 in the as-deposited ZrO2 thin films was confirmed by high-resolution transmission electron microscopy. Ferroelectricity in nanoscale AlN epitaxial layer was also observed for the first time. The nanoscale AlN layer was epitaxially grown on GaN by the atomic layer epitaxy at a low temperature of 300 °C using the layer-by-layer, in-situ atomic layer annealing, developed in our laboratory. As an external voltage was applied to the AlN/GaN heterostructure, a switchable electric polarization, i.e., the polarization-voltage (P-V) hysteresis loop, was observed, which clearly manifests the ferroelectricity in the nanoscale AlN epitaxial layer. In addition, the switchable electric polarization in AlN manipulates the potential barrier, leading to the modulation of the electrical resistance of the heterostructure. Based on the results of surface-enhanced Raman spectroscopy (SERS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) imaging and reciprocal space mapping (RSM) of X-ray diffraction, the reasons why ferroelectricity exists in the AlN epilayer of the heterostructure are explained as follows: The AlN layer is subjected to an in-plane tensile stress from GaN, which transits AlN to a ferroelectric high-pressure phase. This phase transition also changes the spacing of Al and N ions in the AlN epilayer, increasing the amount of the spontaneous polarization of AlN and facilitating its polarization switching. In the process of discovering and identifying ferroelectricity of the ZrO2 and AlN thin films, a set of methods for developing new ferroelectric thin films and studying ferroelectric properties was established for future reference, so that more potential novel ferroelectrics can be discovered in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:25:26Z (GMT). No. of bitstreams: 1 ntu-107-F02527007-1.pdf: 8786052 bytes, checksum: b1be1a26189af348d0109e0a5a9104d1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xxi Chapter 1 Motivation 1 Chapter 2 Literature Review 5 2.1 Ferroelectric Materials 5 2.1.1 Spontaneous Polarization and Crystalline Classes 5 2.1.2 Paraelectric, Ferroelectric, Anti-Ferroelectric and Relaxor 8 2.1.3 Applications of Ferroelectric Materials 10 2.2 Atomic Layer Deposition 11 2.2.1 Atomic Layer Deposition 11 2.2.2 Plasma-Enhanced Atomic Layer Deposition 12 2.2.3 Atomic Layer Annealing 13 2.3 Ferroelectric ALD Thin Films 14 2.3.1 Conventional Ferroelectric Materials 14 2.3.2 Phase Diagram of Nanoscale ZrO2 15 2.3.3 Ferroelectric Hf0.5Zr0.5O2 and Doped-HfO2 Thin Films 16 2.3.4 Fully ALD-Grown TiN/Hf0.5Zr0.5O2/TiN Stack 18 2.3.5 Non-Volatile Data Storage Using Ferroelectric Doped-HfO2 20 2.3.6 Negative Capacitance FETs 22 2.4 Ferroelectricity in Wurtzite Structure 24 2.5 Aluminum Nitride 27 2.5.1 Spontaneous and Piezoelectric Polarizations 27 2.5.2 High-Electron-Mobility Transistors 29 2.5.3 Ferroelectric AlN Thin Films 31 Chapter 3 Experimental Procedure 33 3.1 Ferroelectric Thin Film Production Methods 33 3.1.1 The Hf0.5Zr0.5O2 Thin Films 33 3.1.2 The ZrO2 Thin Films 35 3.1.3 The AlN Thin Films 37 3.2 Ferroelectric Characterization 39 3.2.1 Polarization - Electric Field Hysteresis Loop 39 3.2.2 Current - Electric Field Curve 40 3.2.3 Positive-Up Negative-Down 41 3.2.4 Ferroelectric Characterization for HZO and ZrO2 Thin Films 43 3.2.5 Ferroelectric Characterization for AlN/GaN Heterojunction 44 3.3 Materials Analysis 44 3.3.1 X-Ray Crystallography 44 3.3.2 Transmission Electron Microscopy 45 3.3.3 Auger Electron Spectroscopy 45 3.3.4 Hall Effect Measurement 46 3.3.5 Surface-Enhanced Raman Spectroscopy 46 Chapter 4 Results and Discussion I - Ferroelectric HZO Thin Films 48 4.1 Crystalline Phases 48 4.2 Ferroelectric Properties 49 4.3 Discussion 51 Chapter 5 Results and Discussion II - Ferroelectric ZrO2 Thin Films 53 5.1 Crystalline Phases and Microstructure 53 5.2 Ferroelectric Properties 58 5.3 Reliability Test 60 5.4 ZrO2 Thin Films Grown at Different ALD Temperatures 61 5.5 Discussion 65 Chapter 6 Results and Discussion III - Ferroelectric AlN Thin Films 68 6.1 2DEG at the AlN/GaN heterojunction 68 6.2 Ferroelectric Properties 69 6.2.1 P-V and I-V Characteristics of AlN/GaN Heterostructure 69 6.2.2 P-V Curves of 10-nm- and 25-nm-AlN/GaN Heterostructures Measured at Different Applied Voltages and Frequencies 77 6.2.3 Small Signal Capacitance-Voltage Hysteresis of 10-nm-AlN/GaN Heterostructure 78 6.3 Contribution of Resistance in the AlN/GaN Heterostructure 80 6.4 The Relaxation Time 83 6.5 Material Properties and Microstructure 86 6.6 AlN Thin Films with Different Thickness 91 6.7 ALA with Different Argon Plasma Power 92 6.8 Discussion 95 6.8.1 High-Pressure Phase of AlN 95 6.8.2 High-Angle Annular Dark-Field Imaging 96 6.8.3 Surface Enhanced Raman Scattering 99 6.8.4 Reciprocal Space Mapping 101 6.8.5 Comparison Between Ferroelectric Switching and Resistive Switching 103 6.9 Others 105 Chapter 7 Conclusions 108 7.1 Ferroelectric Hf0.5Zr0.5O2 Thin Films 108 7.2 Ferroelectric ZrO2 Thin Films 108 7.3 Ferroelectric AlN Thin Films 109 Chapter 8 Future Work 110 8.1 Ferroelectric ZrO2 Thin Films on TiN Electrode 110 8.2 Ferroelectric AlxGa1-xN/GaN Epitaxial Heterostructure 110 8.3 Stress Analysis of the Nanoscale Thin Film 110 8.4 Ferroelectric AlN Layer Without Relaxation 111 References 113 | |
| dc.language.iso | en | |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 鐵電 | zh_TW |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 二氧化鋯 | zh_TW |
| dc.subject | 纖鋅礦 | zh_TW |
| dc.subject | zirconium dioxide | en |
| dc.subject | thin film | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | ferroelectric | en |
| dc.subject | wurtzite | en |
| dc.title | 螢石與纖鋅礦結構之新穎鐵電超薄膜 | zh_TW |
| dc.title | Novel Ferroelectric Ultrathin Films Based on Fluorite and Wurtzite Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳敏璋(Miin-Jang Chen) | |
| dc.contributor.oralexamcommittee | 薛景中(Jing-Jong Shyue),吳肇欣(Chao-Hsin Wu),朱英豪(Ying-Hao Eddie Chu),林瑞明(Ray-Ming Lin) | |
| dc.subject.keyword | 鐵電,薄膜,二氧化鋯,纖鋅礦,原子層沉積, | zh_TW |
| dc.subject.keyword | ferroelectric,thin film,zirconium dioxide,wurtzite,atomic layer deposition, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU201804379 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-12-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-12-26 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-F02527007-1.pdf 未授權公開取用 | 8.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
