請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78857
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔣丙煌 | zh_TW |
dc.contributor.author | 顏瑾 | zh_TW |
dc.contributor.author | JIN YAN | en |
dc.date.accessioned | 2021-07-11T15:24:30Z | - |
dc.date.available | 2024-01-16 | - |
dc.date.copyright | 2019-01-17 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 陳蓉蓉。帶殼與不帶殼臺灣藜之安全性評估。 碩士論文。大葉大學生物產業科技學系。2015。
陳振義。台灣藜之應用。台東區農情月刊。2012。 郭耀綸、楊遠波、蔡碧仁、葛孟杰, 紅藜推廣手冊。國立屏東科技大學。2008。 繆宇鋒。γ-氨基丁酸及其受體與腫瘤增殖和侵襲的關係。中國腫瘤生物治療雜誌。2009, 16, 93-96。 楊立川。高γ-氨基丁酸與癲癇。國內外醫學神經學外科學分冊。1993,16(3):19-20。 鄭伊娟。台灣藜之開發應用成果介紹。2010。行政院農業委員會農政與農情。第217期。211-222。 Abdou, A. M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H., Relaxation and immunity enhancement effects of gamma-Aminobutyric acid (GABA) administration in humans. Biofactors, 2006, 26 (3), 201-208. Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E. K.; Gallagher, E., Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 2010, 119 (2), 770-778. Arafat, Y.; Fenalti, G.; Whisstock, J. C.; Mackay, I. R.; de la Banda, M. G.; Rowley, M. J.; Buckle, A. M., Structural determinants of GAD antigenicity. Mol. Immunol, 2009, 47 (2-3), 493-505. Bai, Q. Y.; Chai, M. Q.; Gu, Z. X.; Cao, X. H.; Li, Y.; Liu, K. L., Effects of components in culture medium on glutamate decarboxylase activity and gamma-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem., 2009, 116 (1), 152-157. Belelli, D.; Lambert, J. J., Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci., 2005, 6 (7), 565-575. Blois, M. S., Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 1958, 181 (4617), 1199-1200. Bouche, N.; Lacombe, B.; Fromm, H., GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol., 2003, 13 (12), 607-610. Bradford, M. M., Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal. Biochem., 1976, 72 (1-2), 248-254. Braicu, C.; Mehterov, N.; Vladimirov, B.; Sarafian, V.; Nabavi, S.; Atanasov, A.; Berindan - Neagoe, I., Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol., 2017; Vol. 46. Breitkreuz, K. E.; Shelp, B. J., Subcellular Compartmentation of the 4-Aminobutyrate Shunt in Protoplasts from Developing Soybean Cotyledons. Plant Physiol., 1995, 108 (1), 99-103. Carciochi, R. A.; Galvan-D'Alessandro, L.; Vandendriessche, P.; Chollet, S., Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr., 2016, 71 (4), 361-367. Chu, C. C.; Chen, S. Y.; Chyau, C. C.; Fu, Z. H.; Liu, C. C.; Duh, P. D., Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. J. Funct. Foods, 2016, 26, 585-597. Chyau, C. C.; Chu, C. C.; Chen, S. Y.; Duh, P. D., Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. J. Funct. Foods, 2015, 18, 159-170. Diana, M.; Quílez, J.; Rafecas, M., Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods, 2014, 10, 407-420. Ding, J. Z.; Yang, T. W.; Feng, H.; Dong, M. Y.; Slavin, M.; Xiong, S. B.; Zhao, S. M., Enhancing Contents of gamma-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions. J. Agric. Food Chem., 2016, 64 (5), 1094-1102. Fang, Y. Z.; Yang, S.; Wu, G. Y., Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18 (10), 872-879. Gan, R. Y.; Lui, W. Y.; Wu, K.; Chan, C. L.; Dai, S. H.; Sui, Z. Q.; Corke, H., Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol., 2017, 59, 1-14. Ghose, T., Measurement of cellulase activities. Pure Appl. Chem., 1987, 59 (2), 257-268. Gut, H.; Dominici, P.; Pilati, S.; Astegno, A.; Petoukhov, M. V.; Svergun, D. I.; Grutter, M. G.; Capitani, G., A common structural basis for pH and calmodulin mediated regulation in plant glutamate decarboxylase. J. Mol. Biol., 2009, 392 (2), 334-51. Hayakawa, K.; Kimura, M.; Kasaha, K.; Matsumoto, K.; Sansawa, H.; Yamori, Y., Effect of a gamma aminobutyric acid enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar Kyoto rats. Br. J. Nutr., 2004, 92 (3), 411-417. Higdon, J. V.; Frei, B., Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 2003, 43 (1), 89-143. Hiran, P.; Kerdchoechuen, O.; Laohakunjit, N., Combined effects of fermentation and germination on nutritional compositions, functional properties and volatiles of maize seeds. J. Cereal Sci., 2016, 71, 207-216. Hong, Y. H.; Huang, Y. L.; Liu, Y. C.; Tsai, P. J., Djulis (Chenopodium formosanum, Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. Biomed Res. Int., 2016, 2016, 7368797. Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H., Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr., 2003, 57 (3), 490-495. Jannoey, P.; Niamsup, H.; Lumyong, S.; Suzuki, T.; Katayama, T.; Chairote, G., Comparison of gamma-aminobutyric acid production in Thai rice grains. World J. Microbiol. Biotechnol., 2010, 26 (2), 257-263. Jannoey, P.; Niamsup, H.; Lumyong, S.; Tajima, S.; Nomura, M.; Chairote, G., gamma-Aminobutyric Acid (GABA) Accumulations in Rice During Germination. Chiang Mai J. Sci., 2010, 37 (1), 124-133. Johnson, B. S.; Singh, N. K.; Cherry, J. H.; Locy, R. D., Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry, 1997, 46 (1), 39-44. Johnson, J. J.; Bailey, H. H.; Mukhtar, H., Green tea polyphenols for prostate cancer chemoprevention: A translational perspective. Phytomedicine, 2010, 17 (1), 3-13. Kaukovirta-Norja, A.; Wilhelmson, A.; Poutanen, K., Germination: a means to improve the functionality of oat. Agr. Food Sci., 2004, 13 (1-2), 100-112. Kujala, T. S.; Loponen, J. M.; Klika, K. D.; Pihlaja, K., Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem., 2000, 48 (11), 5338-5342. Leanderson, P.; Faresjo, A. O.; Tagesson, C., Green tea polyphenols inhibit oxidant-induced DNA strand breakage in cultured lung cells. Free Radic. Biol. Med., 1997, 23 (2), 235-242. Lelfert, W. R.; Abeywardena, M. Y., Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity. Nutr. Res., 2008, 28 (12), 842-850. Leventhal, A. G.; Wang, Y. C.; Pu, M. L.; Zhou, Y. F.; Ma, Y. Y., GABA and its agonists improved visual cortical function in senescent monkeys. Science, 2003, 300 (5620), 812-815. Li, H.; Qiu, T.; Huang, G.; Cao, Y., Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact., 2010, 9. Liu, L. L.; Zhai, H. Q.; Wan, J. M., Accumulation of gamma-aminobutyric acid in giant-embryo rice grain in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chem., 2005, 82 (2), 191-196. Mancinelli, A. L.; Huangyang, C. P.; Lindquist, P.; Anderson, O. R.; Rabino, I., Photocontrol of Anthocyanin Synthesis .3. Action of Streptomycin on Synthesis of Chlorophyll and Anthocyanin. Plant Physiol., 1975, 55 (2), 251-257. Martinez-Augustin, O.; Rivero-Gutierrez, B.; Mascaraque, C.; de Medina, F. S., Food Derived Bioactive Peptides and Intestinal Barrier Function. Int. J. Mol. Sci., 2014, 15 (12), 22857-22873. Miller, G. L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem., 1959, 31 (3), 426-428. Narayan, V. S.; Nair, P., Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 1990, 29 (2), 367-375. Nikmaram, N.; Dar, B. N.; Roohinejad, S.; Koubaa, M.; Barba, F. J.; Greiner, R.; Johnson, S. K., Recent advances in -aminobutyric acid (GABA) properties in pulses: an overview. J. Sci. Food Agric., 2017, 97 (9), 2681-2689. Oh, S. H.; Oh, C. H., Effects of Germinated Brown Rice Extracts with Enhanced Levels of GABA on Cancer Cell Proliferation and Apoptosis. J. Med. Food, 2004, 7 (1), 19-23. Okada, T., Physiological function of rice germ enriched with GABA. Food Ind., 2001, 36, 7-8. Park, K. B.; Oh, S. H., Production and characterization of GABA rice yogurt. Food Sci. Biotechnol., 2005, 14 (4), 518-522. Perron, N. R.; Brumaghim, J. L., A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys., 2009, 53 (2), 75-100. Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S. E., Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food rev. int., 2003, 19 (1-2), 179-189. Sakanaka, S.; Juneja, L. R.; Taniguchi, M., Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng., 2000, 90 (1), 81-85. Sanchez-Moreno, C.; Jimenez-Escrig, A.; Saura-Calixto, F., Study of low-density lipoprotein oxidizability indexes to measure the antioxidant activity of dietary polyphenols. Nutr. Res., 2000, 20 (7), 941-953. Scott-Taggart, C. P.; Van Cauwenberghe, O. R.; McLean, M. D.; Shelp, B. J., Regulation of gamma-aminobutyric acid synthesis in situ by glutamate availability. Physiol. Plant., 1999, 106 (4), 363-369. Shelp, B. J.; Bown, A. W.; McLean, M. D., Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci., 1999, 4 (11), 446-452. Shelp, B. J.; Bozzo, G. G.; Trobacher, C. P.; Zarei, A.; Deyman, K. L.; Brikis, C. J., Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci., 2012, 193, 130-135. Singh, A. K.; Rehal, J.; Kaur, A.; Jyot, G., Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. Nutr., 2015, 55 (11), 1575-1589. Skoglund, M.; Peterson, D. M.; Andersson, R.; Nilsson, J.; Dimberg, L. H., Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. J. Cereal Sci., 2008, 48 (2), 294-303. Snedden, W. A.; Arazi, T.; Fromm, H.; Shelp, B. J., Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiol., 1995, 108 (2), 543-549. Streeter, J. G.; Thompson, J. F., In vivo and in vitro studies on γ-aminobutyric acid metabolism with the radish plant (Raphanus sativus, L.). Plant Physiol., 1972, 49 (4), 579-584. Takahashi, T.; Furukawa, A.; Hara, S.; Mizoguchi, H., Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing. J. biosci. Bioeng., 2004, 97 (6), 412-418. Tsai, P. J.; Chen, Y. S.; Sheu, C. H.; Chen, C. Y., Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). J. Agric. Food Chem., 2011, 59 (5), 1814-1820. Tsai, P. J.; Sheu, C. H.; Wu, P. H.; Sun, Y. F., Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J. Agric. Food Chem., 2009, 58 (2), 1020-1025. Tsai, P.J.; Chaung, H. C.; Hsiao, S. M.; Hong, C. Z.; Wang, C. L., The LDL-cholesterol-lowering effects of nano-particled djulis grains. 2011 International Conference on Bioscience, Biochemistry and Bioinformatics, 2011, 5, 218-221. Xing, S. G.; Jun, Y. B.; Hau, Z. W.; Liang, L. Y., Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max (L.) Merr. roots. Plant Physiol. Biochem., 2007, 45 (8), 560-566. Zhang, H.; Yao, H.; Chen, F.; Wang, X., Purification and characterization of glutamate decarboxylase from rice germ. Food Chem., 2007, 101 (4), 1670-1676. Zhang, X.; Du, Z.; Liu, J.; He, J., γ-aminobutyric acid receptors affect the progression and migration of tumor cells. J. Recept. Signal Transduct., 2014, 34 (6), 431-439. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78857 | - |
dc.description.abstract | 台灣藜是一種具有豐富營養價值的準穀物藜亞科台灣原生植物,有著穀類紅寶石的美名。除了豐富的膳食纖維、蛋白質、多種必需氨基酸及微量元素外,台灣藜中還含有許多機能性成分,如γ-氨基丁酸(GABA)以及多酚類物質等。γ-氨基丁酸是廣泛存在於植物和動物中的非蛋白質氨基酸,具有神經安定、降血壓、解酒、抗癌等作用。而多酚類物質具有抗氧化、抗發炎等功效。本研究根據GABA的生成代謝途徑來選擇和優化台灣藜發芽及發酵過程的條件,以得到含較多GABA及多酚類物質,且具有高抗氧化能力之台灣藜芽,並探討可能的機制。根據發芽處理的優化實驗,發現在快速吸水后,處於萌芽階段的台灣藜內部酵素的活性顯著增強,伴隨著功能性成分的增加,並在發芽第三天後趨於穩定。而台灣藜在較高的溫度下發芽能積累更多的GABA,與之對應的麩氨酸脫羧酶(glutamic acid decarboxylase enzyme, GAD)也表現出更高的活性。通過抗氧化能力試驗,觀察到在發芽階段各功能性成分與抗氧化能力皆具有較高的相關性。根據GABA的生成途徑,在浸泡時適當補充麩氨酸(glutamic acid, Glu)及其鹽,GAD輔酶磷酸吡哆醛(pyridoxal-5’-phosphate, PLP)以及維生素B6均可以增加GAD的活性以及GABA的含量,但是營養液濃度過高時則會使得發芽受阻,抑制GAD的活性,並減少GABA的累積。在發酵處理階段,本實驗選用了三株常用於食品加工中的微生物,分析不同菌株之發酵處理對台灣藜之影響。結果發現,乳酸菌、酵母菌在發酵的過程中,均可以利用環境中的碳源、氮源,並以自身的酵素將基質中的蛋白質分解,使多種機能性成分,如GABA與總多酚得到積累,並增加其抗氧化能力。綜合上述實驗結果,發芽與發酵確實能顯著增加台灣藜活性成分的積累,未來可針對發芽與發酵過程中的主要酵素與活性成分變化進一步研究,釐清當中的機制,使其在食品尚有更多的應用。 | zh_TW |
dc.description.abstract | Chenopodium formosanum (djulis) is a native plant with abundant nutritional value in Taiwan, which contains high levels of dietary fiber, proteins, essential amino acids and microelement. Besides, djulis also has many functional components such as γ-aminobutyric acid (GABA) and polyphenols. The γ-aminobutyric acid is a non-protein amino acid widely found in plants and animals, and has functions such as nerve stability, hypotensive, dispelling the effects of alcohol and anti-cancer. Polyphenol is helpful in regulating physiological function like antioxidant and anti-inflammatory, etc. In this study, the conditions of the germination and fermentation were optimized based on the metabolic pathway of GABA, so as to obtain the djulis sprout containing more functional components, including GABA and polyphenol, and having higher antioxidant capacity. According to the optimization experiment of germination, it was found that the activity of the enzymes in djulis was significantly enhanced after rapid water absorption, accompanied by the increase of functional components, and these activities have reached plateau after the third day of germination. Djulis could accumulate more GABA and glutamate decarboxylase (GAD) also showed higher activity at a higher temperature. Through the antioxidant capacity test, it was observed that the functional components have a high correlation with antioxidant capacity during the germination stage. According to the production pathway of GABA, GABA content and GAD activity could be increased by adding glutamic acid or its salts, GAD coenzyme pyridoxal-5’-phosphate (PLP) and vitamin B6 during soaking. However, when the concentration of supplement was too high, it may inhibit the GAD activity and reduce the accumulation of GABA. During the fermentation, three strains of microorganisms commonly used in food processing were selected to study their effects on djulis. The results showed that both lactic acid bacteria and yeast could utilize the carbon and nitrogen sources and decompose the proteins with their own enzymes during the fermentation process, so that a variety of functional components, such as GABA and polyphenols, could be accumulated and the antioxidant capacity increased. Based on the experimental results, germination and fermentation can significantly increase the accumulation of functional components of djulis. However, further studies should be conducted on the changes of the main enzymes and active components during the process of germination and fermentation, so as to clarify the mechanism and make it more applicable in food industry. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:24:30Z (GMT). No. of bitstreams: 1 ntu-108-R05641040-1.pdf: 7764958 bytes, checksum: a8a5ca8ca9dfc6c4766b876850d4bad4 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v 第一章、文獻回顧 1 第一節、台灣藜簡介 1 1.1台灣藜概述 1 1.2台灣藜的組織結構 2 1.3台灣藜的主要活性成分及生理功效 4 1.3.1 γ-氨基丁酸 6 1.3.2多酚類物質 9 1.4 γ-氨基丁酸的生成代謝途徑與關鍵酶 14 1.4.1 酵素的調節 16 1.4.2植物富集γ-氨基丁酸的機理 18 1.4.3微生物發酵合成γ-氨基丁酸 19 1.5台灣藜的研究現狀 20 第二節、發芽及發酵的相關介紹 21 2.1發芽概述 21 2.1.1發芽過程的生理及營養成分變化 21 2.2發酵概述 22 2.2.1發酵過程的生理及營養成分變化 23 第二章、研究目的與實驗架構 24 第一節、研究目的 24 第二節、實驗架構 25 第三章、實驗材料與方法 26 第一節、實驗材料 26 1.1台灣藜來源 26 1.2發酵菌種 26 第二節、藥品試劑 26 第三節、儀器設備 27 第四節、實驗處理與方法 27 4.1台灣藜發芽 27 4.1.1發芽前處理 27 4.1.2浸泡試驗 27 4.1.3萌芽試驗 28 4.1.4浸泡時補充營養液對GABA的富集試驗 28 4.2台灣藜發酵 30 4.2.1菌種活化 30 4.2.2發酵基本流程 30 4.3台灣藜發芽與發酵之組合處理 30 4.3.1階段性處理 30 4.3.2同時處理 31 4.4台灣藜發芽、發酵產物之分析 31 4.4.1 GABA含量測定 31 4.4.2 GAD活性測定 32 4.4.3總酚含量測定 32 4.4.4花青素含量測定 33 4.4.5 DPPH自由基清除率測定 33 4.4.6澱粉酶活性測定 34 4.4.7蛋白酶活性測定 34 4.4.8纖維素酶活性測定 35 4.4.9還原糖含量測定 35 4.4.10蛋白質含量測定 35 第四章、結果與討論 37 第一節、台灣藜發芽 37 1.1浸泡試驗 37 1.1.1浸泡過程台灣藜吸水之變化 37 1.1.2浸泡過程台灣藜功能性成分之變化 38 1.2浸泡溫度試驗 43 1.3浸泡時間試驗 45 1.4萌芽試驗 47 1.4.1萌芽過程台灣藜物性之變化 47 1.4.2萌芽過程台灣藜功能性成分之變化 49 1.5浸泡時補充營養液對GABA的富集試驗 55 1.5.1麩氨酸與麩氨酸鈉(MSG) 55 1.5.2 磷酸吡哆醛(PLP)與維生素B6(VB6) 57 1.5.3 鈣離子 59 1.5.4 pH值 59 第二節、台灣藜發酵 62 2.1發酵過程pH值與基本成分之變化 62 2.1.1還原糖 63 2.1.2蛋白質 64 2.1.3色差值 65 2.2發酵過程台灣藜功能性成分之變化 68 2.2.1 GABA含量與GAD活性 68 2.2.2總多酚含量、DPPH自由基清除能力與花青素含量 68 第三節、台灣藜發芽與發酵之組合處理 72 3.1階段性處理 72 3.1.1階段性處理過程台灣藜功能性成分之變化 72 3.2同時處理 77 3.2.1同時處理過程台灣藜功能性成分之變化 77 第五章、結論 82 參考文獻 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 發芽及發酵對台灣藜主要機能性成分之影響 | zh_TW |
dc.title | Effects of germination and fermentation on the functional compounds of Chenopodium formosanum | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉佳玲;江伯源;林育蔚;李柏憲 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 台灣藜,γ-氨基丁酸(GABA),多酚,抗氧化,發芽,發酵,GAD, | zh_TW |
dc.subject.keyword | Chenopodium formosanum (djulis),γ-aminobutyric acid (GABA),polyphenol,antioxidant,germination,fermentation,Glutamate decarboxylase (GAD), | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU201900081 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-01-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
dc.date.embargo-lift | 2024-01-17 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 7.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。