Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁俞文(Yu-Wen Ting)
dc.contributor.authorWei-Jing Huangen
dc.contributor.author黃瑋婧zh_TW
dc.date.accessioned2021-07-11T15:24:26Z-
dc.date.available2022-01-17
dc.date.copyright2019-01-17
dc.date.issued2019
dc.date.submitted2019-01-14
dc.identifier.citationSadilova, E.; Carle, R.; Stintzing, F. C., Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular nutrition & food research 2007, 51 (12), 1461-1471.
2. Kanner, J.; Frankel, E.; Granit, R.; German, B.; Kinsella, J. E., Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry 1994, 42 (1), 64-69.
3. Granato, D.; de Magalhães Carrapeiro, M.; Fogliano, V.; van Ruth, S. M., Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends in Food Science & Technology 2016, 52, 31-48.
4. Patras, A.; Brunton, N. P.; O'Donnell, C.; Tiwari, B., Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 2010, 21 (1), 3-11.
5. d'Agostino, R.; Favia, P.; Oehr, C.; Wertheimer, M. R., Low‐temperature plasma processing of materials: past, present, and future. Plasma Processes and Polymers 2005, 2 (1), 7-15.
6. Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T., Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 2017, 75, 83-91.
7. Garofulić, I. E.; Jambrak, A. R.; Milošević, S.; Dragović-Uzelac, V.; Zorić, Z.; Herceg, Z., The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT-Food Science and Technology 2015, 62 (1), 894-900.
8. Kovačević, D. B.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Jambrak, A. R.; Herceg, Z., Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food chemistry 2016, 190, 317-323.
9. Zhu, F.; Du, B.; Zheng, L.; Li, J., Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food chemistry 2015, 186, 207-212.
10. Zhou, K.; Raffoul, J. J., Potential anticancer properties of grape antioxidants. Journal of oncology 2012, 2012.
11. Frayne, R., Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography. American Journal of Enology and Viticulture 1986, 37 (4), 281-287.
12. Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K., Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT-Food Science and Technology 2009, 42 (7), 1269-1274.
13. Jayaprakasha, G.; Singh, R.; Sakariah, K., Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food chemistry 2001, 73 (3), 285-290.
14. Bagchi, D.; Bagchi, M.; Stohs, S. J.; Das, D. K.; Ray, S. D.; Kuszynski, C. A.; Joshi, S. S.; Pruess, H. G., Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 2000, 148 (2-3), 187-197.
15. Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M., Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry 2008, 107 (2), 656-663.
16. Iyer, M. M.; Sacks, G. L.; Padilla‐Zakour, O. I., Impact of harvesting and processing conditions on green leaf volatile development and phenolics in Concord grape juice. Journal of Food Science 2010, 75 (3), C297-C304.
17. Morris, J. R., Factors influencing grape juice quality. HortTechnology 1998, 8 (4), 471-478.
18. Spanos, G. A.; Wrolstad, R. E., Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of agricultural and food chemistry 1990, 38 (7), 1565-1571.
19. Oren-Shamir, M., Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Science 2009, 177 (4), 310-316.
20. Cavalcanti, R. N.; Santos, D. T.; Meireles, M. A. A., Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Research International 2011, 44 (2), 499-509.
21. Kähkönen, M. P.; Heinonen, M., Antioxidant activity of anthocyanins and their aglycons. Journal of agricultural and food chemistry 2003, 51 (3), 628-633.
22. Bowen-Forbes, C. S.; Zhang, Y.; Nair, M. G., Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. Journal of food composition and analysis 2010, 23 (6), 554-560.
23. Matsui, T.; Ueda, T.; Oki, T.; Sugita, K.; Terahara, N.; Matsumoto, K., α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. Journal of Agricultural and Food Chemistry 2001, 49 (4), 1948-1951.
24. Yoshimoto, M.; Okuno, S.; Yamaguchi, M.; Yamakawa, O., Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato. Bioscience, biotechnology, and biochemistry 2001, 65 (7), 1652-1655.
25. Rechner, A. R.; Kroner, C., Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thrombosis research 2005, 116 (4), 327-334.
26. Castaneda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A., Chemical studies of anthocyanins: A review. Food chemistry 2009, 113 (4), 859-871.
27. Hou, D.-X., Potential mechanisms of cancer chemoprevention by anthocyanins. Current molecular medicine 2003, 3 (2), 149-159.
28. Khoo, H. E.; Azlan, A.; Tang, S. T.; Lim, S. M., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research 2017, 61 (1), 1361779.
29. Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R., Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64 (5), 923-933.
30. Wu, X.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Gebhardt, S. E.; Prior, R. L., Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of agricultural and food chemistry 2006, 54 (11), 4069-4075.
31. Giusti, M. M.; Wrolstad, R. E., Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal 2003, 14 (3), 217-225.
32. Wrolstad, R. E., Color and pigment analyses in fruit products. 1993.
33. Hager, T. J.; Howard, L. R.; Prior, R. L., Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. Journal of Agricultural and Food Chemistry 2008, 56 (3), 689-695.
34. Kara, Ş.; Erçelebi, E. A., Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). Journal of Food Engineering 2013, 116 (2), 541-547.
35. Rhim, J.-W., Kinetics of thermal degradation of anthocyanin pigment solutions driven from red flower cabbage. Food Science and Biotechnology 2002, 11 (4), 361-364.
36. Loypimai, P.; Moongngarm, A.; Chottanom, P., Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. Journal of food science and technology 2016, 53 (1), 461-470.
37. Sinela, A.; Rawat, N.; Mertz, C.; Achir, N.; Fulcrand, H.; Dornier, M., Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food chemistry 2017, 214, 234-241.
38. Rawson, A.; Patras, A.; Tiwari, B.; Noci, F.; Koutchma, T.; Brunton, N., Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International 2011, 44 (7), 1875-1887.
39. Sui, X.; Bary, S.; Zhou, W., Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage. Food chemistry 2016, 192, 516-524.
40. MARKARIS, P.; Livingston, G. E.; Fellers, C. R., Quantitative aspects of strawberry pigment degradation. Journal of Food Science 1957, 22 (2), 117-130.
41. Adams, J., Thermal degradation of anthocyanins with particular reference to the 3‐glycosides of cyanidin. I. In acidified aqueous solution at 100° C. Journal of the Science of Food and Agriculture 1973, 24 (7), 747-762.
42. Zhang, Z.; Pang, X.; Xuewu, D.; Ji, Z.; Jiang, Y., Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry 2005, 90 (1-2), 47-52.
43. Kader, F.; Irmouli, M.; Nicolas, J.; Metche, M., Involvement of blueberry peroxidase in the mechanisms of anthocyanin degradation in blueberry juice. Journal of Food Science 2002, 67 (3), 910-915.
44. Deylami, M. Z.; Rahman, R. A.; Tan, C. P.; Bakar, J.; Olusegun, L., Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. Journal of Food Engineering 2016, 178, 12-19.
45. Kader, F.; Rovel, B.; Girardin, M.; Metche, M., Mechanism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). Role of blueberry polyphenol oxidase, chlorogenic acid and anthocyanins. Journal of the Science of Food and Agriculture 1997, 74 (1), 31-34.
46. Sarni, P.; Fulcrand, H.; Souillol, V.; Souquet, J. M.; Cheynier, V., Mechanisms of anthocyanin degradation in grape must‐like model solutions. Journal of the Science of Food and Agriculture 1995, 69 (3), 385-391.
47. Xiao, H.-W.; Pan, Z.; Deng, L.-Z.; El-Mashad, H. M.; Yang, X.-H.; Mujumdar, A. S.; Gao, Z.-J.; Zhang, Q., Recent developments and trends in thermal blanching–A comprehensive review. Information Processing in Agriculture 2017, 4 (2), 101-127.
48. Skrede, G.; Wrolstad, R.; Durst, R., Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). Journal of food science 2000, 65 (2), 357-364.
49. Kearsley, M.; Rodriguez, N., The stability and use of natural colours in foods: anthocyanin, β‐carotene and riboflavin. International Journal of Food Science & Technology 1981, 16 (4), 421-431.
50. Sarangapani, C.; O'Toole, G.; Cullen, P.; Bourke, P., Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 2017, 44, 235-241.
51. Zabetakis, I.; Leclerc, D.; Kajda, P., The effect of high hydrostatic pressure on the strawberry anthocyanins. Journal of Agricultural and Food Chemistry 2000, 48 (7), 2749-2754.
52. Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Viskeliene, R.; Bobinas, C., Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International 2005, 38 (8-9), 867-871.
53. Moncada, M. C.; Moura, S.; Melo, M. J.; Roque, A.; Lodeiro, C.; Pina, F., Complexation of aluminum (III) by anthocyanins and synthetic flavylium salts: A source for blue and purple color. Inorganica Chimica Acta 2003, 356, 51-61.
54. Pereira, R.; Vicente, A., Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 2010, 43 (7), 1936-1943.
55. Morris, C.; Brody, A. L.; Wicker, L., Non‐thermal food processing/preservation technologies: a review with packaging implications. Packaging Technology and Science: An International Journal 2007, 20 (4), 275-286.
56. Tiwari, B.; O'donnell, C.; Cullen, P., Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology 2009, 20 (3-4), 137-145.
57. Farkas, D. F.; Hoover, D. G., High pressure processing. Journal of Food Science 2000, 65, 47-64.
58. Smelt, J., Recent advances in the microbiology of high pressure processing. Trends in food science & technology 1998, 9 (4), 152-158.
59. Spilimbergo, S.; Dehghani, F.; Bertucco, A.; Foster, N. R., Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnology and bioengineering 2003, 82 (1), 118-125.
60. Jeyamkondan, S.; Jayas, D.; Holley, R., Pulsed electric field processing of foods: a review. Journal of food protection 1999, 62 (9), 1088-1096.
61. Tauxe, R. V., Food safety and irradiation: protecting the public from foodborne infections. Emerging infectious diseases 2001, 7 (3 Suppl), 516.
62. Farkas, J.; Mohácsi-Farkas, C., History and future of food irradiation. Trends in Food Science & Technology 2011, 22 (2-3), 121-126.
63. Chemat, F.; Khan, M. K., Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics sonochemistry 2011, 18 (4), 813-835.
64. Garcia-Gonzalez, L.; Geeraerd, A. H.; Spilimbergo, S.; Elst, K.; Van Ginneken, L.; Debevere, J.; Van Impe, J.; Devlieghere, F., High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. International journal of food microbiology 2007, 117 (1), 1-28.
65. Khadre, M.; Yousef, A.; Kim, J. G., Microbiological aspects of ozone applications in food: a review. Journal of food science 2001, 66 (9), 1242-1252.
66. Tiwari, B.; O'donnell, C.; Muthukumarappan, K.; Cullen, P., Anthocyanin and colour degradation in ozone treated blackberry juice. Innovative food science & emerging technologies 2009, 10 (1), 70-75.
67. Tiwari, B.; O’donnell, C.; Patras, A.; Brunton, N.; Cullen, P., Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chemistry 2009, 113 (4), 1119-1126.
68. Del Pozo-Insfran, D.; Balaban, M. O.; Talcott, S. T., Enhancing the retention of phytochemicals and organoleptic attributes in muscadine grape juice through a combined approach between dense phase CO2 processing and copigmentation. Journal of agricultural and food chemistry 2006, 54 (18), 6705-6712.
69. Del Pozo‐Insfran, D.; Del Follo‐Martinez, A.; Talcott, S.; Brenes, C., Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. Journal of food science 2007, 72 (4), S247-S253.
70. Tiwari, B.; Patras, A.; Brunton, N.; Cullen, P.; O’donnell, C., Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics sonochemistry 2010, 17 (3), 598-604.
71. Corrales, M.; Butz, P.; Tauscher, B., Anthocyanin condensation reactions under high hydrostatic pressure. Food Chemistry 2008, 110 (3), 627-635.
72. Knorr, D., Impact of non-thermal processing on plant metabolites. Journal of Food Engineering 2003, 56 (2-3), 131-134.
73. Zhang, Y.; Hu, X.; Chen, F.; Wu, J.; Liao, X.; Wang, Z., Stability and colour characteristics of PEF-treated cyanidin-3-glucoside during storage. Food chemistry 2008, 106 (2), 669-676.
74. Alighourchi, H.; Barzegar, M.; Abbasi, S., Effect of gamma irradiation on the stability of anthocyanins and shelf-life of various pomegranate juices. Food Chemistry 2008, 110 (4), 1036-1040.
75. Ayed, N.; Yu, H.-L.; Lacroix, M., Improvement of anthocyanin yield and shelf-life extension of grape pomace by gamma irradiation. Food research international 1999, 32 (8), 539-543.
76. Tiwari, B.; OʼDonnell, C.; Patras, A.; Cullen, P., Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. Journal of Agricultural and Food Chemistry 2008, 56 (21), 10071-10077.
77. Gomez, E.; Rani, D. A.; Cheeseman, C.; Deegan, D.; Wise, M.; Boccaccini, A., Thermal plasma technology for the treatment of wastes: a critical review. Journal of Hazardous Materials 2009, 161 (2), 614-626.
78. Surowsky, B.; Schlüter, O.; Knorr, D., Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Engineering Reviews 2015, 7 (2), 82-108.
79. Ekezie, F.-G. C.; Sun, D.-W.; Cheng, J.-H., A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology 2017, 69, 46-58.
80. Beggs, C. B., A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochemical & Photobiological Sciences 2002, 1 (6), 431-437.
81. Alkawareek, M. Y.; Gorman, S. P.; Graham, W. G.; Gilmore, B. F., Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. International journal of antimicrobial agents 2014, 43 (2), 154-160.
82. Joshi, S. G.; Cooper, M.; Yost, A.; Paff, M.; Ercan, U. K.; Fridman, G.; Friedman, G.; Fridman, A.; Brooks, A. D., Non-thermal dielectric-barrier discharge (DBD) Plasma-induced inactivation involves oxidative-DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial agents and chemotherapy 2011.
83. Digel, I.; Artmann, A. T.; Nishikawa, K.; Cook, M.; Kurulgan, E.; Artmann, G., Bactericidal effects of plasma-generated cluster ions. Medical and Biological Engineering and Computing 2005, 43 (6), 800-807.
84. Venezia, R. A.; Orrico, M.; Houston, E.; Yin, S.-M.; Naumova, Y. Y., Lethal activity of nonthermal plasma sterilization against microorganisms. Infection Control & Hospital Epidemiology 2008, 29 (5), 430-436.
85. Dobrynin, D.; Fridman, G.; Friedman, G.; Fridman, A., Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics 2009, 11 (11), 115020.
86. Lunov, O.; Zablotskii, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, E.; Dejneka, A.; Kubinová, Š., The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2016, 82, 71-83.
87. Li, X.; Farid, M., A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering 2016, 182, 33-45.
88. Laroussi, M.; Mendis, D.; Rosenberg, M., Plasma interaction with microbes. New Journal of Physics 2003, 5 (1), 41.
89. Zimmermann, J.; Shimizu, T.; Schmidt, H.; Li, Y.; Morfill, G.; Isbary, G., Test for bacterial resistance build-up against plasma treatment. New Journal of Physics 2012, 14 (7), 073037.
90. Sondi, I.; Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science 2004, 275 (1), 177-182.
91. Misra, N.; Schlüter, O.; Cullen, P., Plasma in food and agriculture. In Cold Plasma in Food and Agriculture, Elsevier: 2016; pp 1-16.
92. Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J., Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food chemistry 2016, 197, 436-444.
93. Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J., Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of hazardous materials 2015, 300, 643-651.
94. Tappi, S.; Berardinelli, A.; Ragni, L.; Dalla Rosa, M.; Guarnieri, A.; Rocculi, P., Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies 2014, 21, 114-122.
95. Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P., Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 2016, 33, 225-233.
96. Lee, H.; Kim, J. E.; Chung, M.-S.; Min, S. C., Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food microbiology 2015, 51, 74-80.
97. Misra, N.; Kaur, S.; Tiwari, B. K.; Kaur, A.; Singh, N.; Cullen, P., Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids 2015, 44, 115-121.
98. Bahrami, N.; Bayliss, D.; Chope, G.; Penson, S.; Perehinec, T.; Fisk, I. D., Cold plasma: A new technology to modify wheat flour functionality. Food chemistry 2016, 202, 247-253.
99. Sarangapani, C.; Thirumdas, R.; Devi, Y.; Trimukhe, A.; Deshmukh, R. R.; Annapure, U. S., Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT-Food Science and Technology 2016, 69, 482-489.
100. Selcuk, M.; Oksuz, L.; Basaran, P., Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource technology 2008, 99 (11), 5104-5109.
101. Pankaj, S.; Misra, N.; Cullen, P., Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies 2013, 19, 153-157.
102. Surowsky, B.; Fischer, A.; Schlueter, O.; Knorr, D., Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies 2013, 19, 146-152.
103. Lee, K. H.; Kim, H.-J.; Woo, K. S.; Jo, C.; Kim, J.-K.; Kim, S. H.; Park, H. Y.; Oh, S.-K.; Kim, W. H., Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT-Food Science and Technology 2016, 73, 442-447.
104. Misra, N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J.; Keener, K.; Cullen, P., In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering 2014, 125, 131-138.
105. Misra, N. N.; Keener, K. M.; Bourke, P.; Mosnier, J.-P.; Cullen, P. J., In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of bioscience and bioengineering 2014, 118 (2), 177-182.
106. Pankaj, S. K.; Wan, Z.; Keener, K. M., Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7 (1), 4.
107. Misra, N.; Jo, C., Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 2017, 64, 74-86.
108. Coutinho, N. M.; Silveira, M. R.; Rocha, R. S.; Moraes, J.; Ferreira, M. V. S.; Pimentel, T. C.; Freitas, M. Q.; Silva, M. C.; Raices, R. S.; Ranadheera, C. S., Cold plasma processing of milk and dairy products. Trends in Food Science & Technology 2018.
109. Rodríguez, Ó.; Gomes, W. F.; Rodrigues, S.; Fernandes, F. A., Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT-Food Science and Technology 2017, 84, 457-463.
110. Surowsky, B.; Fröhling, A.; Gottschalk, N.; Schlüter, O.; Knorr, D., Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International journal of food microbiology 2014, 174, 63-71.
111. Shi, X.-M.; Zhang, G.-J.; Wu, X.-L.; Li, Y.-X.; Ma, Y.; Shao, X.-J., Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science 2011, 39 (7), 1591-1597.
112. Almeida, F. D. L.; Cavalcante, R. S.; Cullen, P. J.; Frias, J. M.; Bourke, P.; Fernandes, F. A.; Rodrigues, S., Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies 2015, 32, 127-135.
113. Pankaj, S. K.; Wan, Z.; Colonna, W.; Keener, K. M., Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture 2017, 97 (12), 4016-4021.
114. Herceg, Z.; Kovačević, D. B.; Kljusurić, J. G.; Jambrak, A. R.; Zorić, Z.; Dragović-Uzelac, V., Gas phase plasma impact on phenolic compounds in pomegranate juice. Food chemistry 2016, 190, 665-672.
115. Kovačević, D. B.; Kljusurić, J. G.; Putnik, P.; Vukušić, T.; Herceg, Z.; Dragović-Uzelac, V., Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food chemistry 2016, 212, 323-331.
116. Chen, B.-L.; Lay, H.-L., Components and antioxidant activity in teas after autoclave treatment. Crop Environ Bioinformatics 2012, 8, 109-18.
117. Kim, D.-O.; Lee, K. W.; Lee, H. J.; Lee, C. Y., Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and food chemistry 2002, 50 (13), 3713-3717.
118. Choi, M.; Kim, G.; Lee, H., Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Research International 2002, 35 (8), 753-759.
119. Sohbatzadeh, F.; Colagar, A. H.; Mirzanejhad, S.; Mahmodi, S., E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Applied biochemistry and biotechnology 2010, 160 (7), 1978-1984.
120. Ragni, L.; Berardinelli, A.; Vannini, L.; Montanari, C.; Sirri, F.; Guerzoni, M. E.; Guarnieri, A., Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. Journal of Food Engineering 2010, 100 (1), 125-132.
121. Laroussi, M., Low temperature plasma‐based sterilization: overview and state‐of‐the‐art. Plasma processes and polymers 2005, 2 (5), 391-400.
122. Vandamme, M.; Robert, E.; Lerondel, S.; Sarron, V.; Ries, D.; Dozias, S.; Sobilo, J.; Gosset, D.; Kieda, C.; Legrain, B., ROS implication in a new antitumor strategy based on non‐thermal plasma. International journal of cancer 2012, 130 (9), 2185-2194.
123. Rajasekaran, P.; Mertmann, P.; Bibinov, N.; Wandke, D.; Viöl, W.; Awakowicz, P., DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology. Journal of Physics D: Applied Physics 2009, 42 (22), 225201.
124. Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P., Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology 2015, 107, 55-65.
125. Stevens, C.; Wilson, C.; Lu, J.; Khan, V.; Chalutz, E.; Droby, S.; Kabwe, M.; Haung, Z.; Adeyeye, O.; Pusey, L., Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Protection 1996, 15 (2), 129-134.
126. Wang, C. Y.; Chen, C.-T.; Wang, S. Y., Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry 2009, 117 (3), 426-431.
127. Tomás‐Barberán, F. A.; Espín, J. C., Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture 2001, 81 (9), 853-876.
128. Min, S. C.; Roh, S. H.; Niemira, B. A.; Boyd, G.; Sites, J. E.; Uknalis, J.; Fan, X., In-package inhibition of E. coli O157: H7 on bulk Romaine lettuce using cold plasma. Food microbiology 2017, 65, 1-6.
129. Ziuzina, D.; Patil, S.; Cullen, P. J.; Keener, K.; Bourke, P., Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food microbiology 2014, 42, 109-116.
130. Kim, J. H.; Min, S. C., Microwave-powered cold plasma treatment for improving microbiological safety of cherry tomato against Salmonella. Postharvest Biology and Technology 2017, 127, 21-26.
131. Sánchez-Moreno, C.; Larrauri, J. A.; Saura-Calixto, F., Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International 1999, 32 (6), 407-412.
132. Burin, V. M.; Falcão, L. D.; Gonzaga, L. V.; Fett, R.; Rosier, J. P.; Bordignon-Luiz, M. T., Colour, phenolic content and antioxidant activity of grape juice. Food Science and Technology 2010, 30 (4), 1027-1032.
133. Talcott, S. T.; Brenes, C. H.; Pires, D. M.; Del Pozo-Insfran, D., Phytochemical stability and color retention of copigmented and processed muscadine grape juice. Journal of agricultural and food chemistry 2003, 51 (4), 957-963.
134. Tiwari, B.; O’donnell, C.; Patras, A.; Brunton, N.; Cullen, P., Anthocyanins and color degradation in ozonated grape juice. Food and chemical toxicology 2009, 47 (11), 2824-2829.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78856-
dc.description.abstract在近幾年的食品市場中,食物的營養品質越來越受到重視,因此儘量減少加工製程對食材的破壞成為主流。葡萄汁因含有豐富的花青素及其他酚類化合物對人體健康有許多益處。傳統的熱加工會加速花青素的降解,嚴重影響到食品的營養品質及口感。為此,尋找替代熱處理的新型加工技術已經成為食品科技的重要方向。低溫電漿技術應用於食品中可以有效地抑制微生物,延長食品的儲藏期限。另外低溫可以減少花青素等熱敏性化合物在處理過程中的損失從而更好地保留蔬果製品的品質。本研究旨在評估低溫電漿技術對葡萄汁品質的影響,探討運用低溫電漿技術替代熱加工對其進行殺菌的可行性。比較不同電漿解離功率及處理時間對葡萄汁pH值、可溶性固形物、顏色、總花青素含量和總酚含量及微生物抑制的效果。結果顯示,隨著電漿功率的升高,葡萄汁中的總花青素會逐漸下降,並且造成樣品顏色發生明顯變化。然而在50 W之電漿解離功率下,不會對葡萄汁顏色產生明顯的影響,且電漿處理組花青素和酚類的保留率均高於熱處理組。低溫電漿對葡萄汁中的大腸桿菌也有很好的抑制效果,在解離功率50 W處理20分鐘後可使大腸桿菌數量下降2.5個對數值。綜合上述,低溫常壓電漿既可以有效地抑制微生物又可以較好地保留葡萄汁的品質,極有潛力應用到果汁的生產中作為巴士德殺菌的替代或與之結合使用。zh_TW
dc.description.abstractIn recent years, nutritional quality and minimal processing have gained much more attention in food market. Grape juice benefits human health owing to abundant anthocyanins and other polyphenolics. However, traditional thermal pasteurization can accelerate degradation of anthocyanins. To solve this problem, it’s a crucial topic that develop non-thermal technology to take place of thermal processing. Atmospheric cold plasma technology has been widely used in fruit products to prevent contamination, while room temperature can lower the loss rate of anthocyanin, improve the quality of fruit by-products . The aim of this study was to evaluate the effect of cold plasma treatment on the quality of grape juice, to discuss the potential of cold plasma pasteurization in fruit juice processing. After cold plasma/thermal processing, samples were measured pH, total soluble solids (TSS), color index, total phenols content (TPC), total anthocyanin content (TAC), microbe inactivation. With the increasing of plasma power, TAC in grape juice significantly decreased, which resulted in visually color difference.50 W plasma treating didn’t affect the color of grape juice, and the anthocyanin and phenols content were higher than thermal-treated group. 50 W cold plasma treated for 20 min led to 2.5 log reduction of Escherichia coli in grape juice. In a word, atmosphere cold plasma effectively inactivate microbe in grape juice, while improve nutritional quality and marketing value. In the future, cold plasma pasteurization can be applied to juice processing as a candidate of thermal treated.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:24:26Z (GMT). No. of bitstreams: 1
ntu-108-R04641041-1.pdf: 2250735 bytes, checksum: 1dc10ef2267f7c98afe680192dc95c16 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
Abstract II
目 錄 III
圖目錄 V
表目錄 VI
第一章前言 1
第二章文獻回顧 3
2.1葡萄與葡萄汁 3
2.2 花青素 4
2.2.1 花青素簡介 4
2.2.2 花青素結構與分佈 5
2.2.3 花青素的穩定性與熱降解 9
2.2.4 非熱加工對食品中花青素的影響 16
2.3 低溫電漿 20
2.3.1 低溫電漿簡介 20
2.3.2 電漿激發裝置 21
2.3.3 低溫電漿的殺菌原理 23
2.3.4 低溫電漿的應用 26
2.3.5 低溫電漿對果汁中花青素的影響 27
第三章研究目的與架構 28
3.1 研究目的 28
3.2實驗架構 28
第四章材料與方法 29
4.1 實驗材料 29
4.2 低溫電漿處理 29
4.3 熱處理 30
4.4 pH值與可溶性固形物(TSS) 30
4.5 顏色指標測定 30
4.6 總酚含量(TPC)測量 30
4.7 總花青素含量(TAC)測量 31
4.8 抗氧化能力 31
4.9 殺菌效果 32
4.10 數據分析 32
第五章結果與討論 33
5.1電漿處理功率對葡萄汁品質的影響 33
5.1.1 處理功率對葡萄汁pH值及TSS的影響 33
5.1.2 處理功率對葡萄汁顏色的影響 35
5.1.3 處理功率對葡萄汁中抑菌效果的影響 37
5.1.4 處理功率對葡萄汁總花青素含量的影響 39
5.1.5 處理功率對葡萄汁總酚含量的影響 41
5.1.6 處理功率對葡萄汁自由基清除能力的影響 43
5.1.7 小結 45
5.2 電漿處理時間對葡萄汁品質的影響 46
5.2.1電漿處理時間對葡萄汁pH值及TSS的影響 46
5.2.2 低溫常壓電漿處理時間對葡萄汁顏色的影響 47
5.2.3 低溫常壓電漿處理時間對葡萄汁中抑菌效果影響 49
5.2.4 低溫常壓電漿處理時間對葡萄汁總酚含量的影響 51
5.2.5 低溫常壓電漿處理時間對葡萄汁總花青素含量的影響 53
5.2.6 處理時間對葡萄汁自由基清除能力的影響 55
5.2.7 小結 57
第六章總結與展望 58
6.1 總結 58
6.2 展望 58
第七章參考文獻 59
dc.language.isozh-TW
dc.subject花青素zh_TW
dc.subject低溫電漿zh_TW
dc.subject葡萄汁zh_TW
dc.subject巴士德殺菌zh_TW
dc.subject抑菌zh_TW
dc.subjectmicrobe inactivationen
dc.subjectCold plasmaen
dc.subjectgrape juiceen
dc.subjectpasteurizationen
dc.subjectanthocyaninen
dc.title低溫常壓電漿殺菌對葡萄汁品質的影響zh_TW
dc.titleEffect of Atmospheric Cold Plasma Pasteurization on
the Quality of Grape Juice
en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞碧(James Swi-Bea Wu),沈賜川(Szu-Chuan Shen),鄭光成(Kuan-Chen Cheng),劉志宏(Zhi-Hong Liu)
dc.subject.keyword低溫電漿,葡萄汁,巴士德殺菌,花青素,抑菌,zh_TW
dc.subject.keywordCold plasma,grape juice,pasteurization,anthocyanin,microbe inactivation,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201900063
dc.rights.note有償授權
dc.date.accepted2019-01-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R04641041-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved