Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78785
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能
dc.contributor.authorKuan-ting Hsinen
dc.contributor.author辛冠霆zh_TW
dc.date.accessioned2021-07-11T15:19:11Z-
dc.date.available2021-07-15
dc.date.copyright2019-07-15
dc.date.issued2019
dc.date.submitted2019-07-04
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78785-
dc.description.abstract研究歷史事件如何影響現今物種分布模式與分子調控機制如何控制發育過程是生物學上重要的研究議題。在本論文中,苦苣苔(Conandron ramondioides) 被用來研究這兩個議題。理由有三。第一,自第四紀以來,東中國海海床曾因冰期循環造成海平面下降形成陸橋而多次連結亞洲陸塊與鄰近島嶼。現今零散且間斷分布的苦苣苔族群(包含日本、東南中國、台灣與西表島)是否曾經透過東中國海陸橋傳播是第一個研究目標。第二,花對稱性基因在兩側對稱花侷限表現於背側。花對稱性基因在輻射對稱花的苦苣苔花部表現是否有所改變為第二個研究議題。第三,多條花對稱性調控基因(GCYCs)在同屬於Asiatic Trichosporeae族的苦苣苔與兩側對稱花物種(如角桐草、石吊蘭)中被分離。Asiatic Trichosporeae族物種保留多條花對稱性調控基因的可能機制與多樣的花對稱性調控基因表現模式的關連是第三個研究議題。
重建多基因座親緣樹顯示現今零散且間斷分布的苦苣苔族群形成三個與地理區域相符合的分群,分別為本州-四國群、東南中國群與台灣-西表島群。三群間並沒有群間共享單套型且各群間缺乏基因交流顯示即使東中國海陸橋有多次連結亞洲陸塊與鄰近島嶼,苦苣苔族群仍無法跨越東中國海陸橋進行基因交流。結果顯示東中國海陸橋對苦苣苔是無法跨越的障礙(過濾屏障)。第二,檢視苦苣苔花部發育過程發現苦苣苔的雄蕊輪與花瓣輪自花原基分化後維持等速生長直到開花且花對稱性調控基因(GCYCs)不表現於苦苣苔的雄蕊輪與花瓣輪。因此推論苦苣苔發育為輻射對稱花是透過失去花對稱性調控基因在背側表現而達成。第三,由重建的Asiatic Trichosporeae GCYCs親緣樹發現 GCYCs基因形成GCYC1C與GCYC1D兩群。分析天擇訊號(ω)在重複事件發生前後的改變,結果顯示ω由重複事件發生前的0.2819上升至發生後的0.3985,呈現由遺傳限制釋放的訊號(relaxation)。由於Asiatic Trichosporeae 族中兩側對稱花或是輻射對稱花物種的GCYCs基因都呈現多樣的表現模式。我們推論在Asiatic Trichosporeae 族中GCYCs重複事件發生後的GCYC1C與GCYC1D拷貝由遺傳限制釋放創造了 ” 演化的彈性窗戶(evolutionary window of flexibility)” 使得多條GCYC1C與GCYC1D拷貝能被保留且各自獲得在花部多樣的基因表現。
zh_TW
dc.description.abstractStudying how historical events shaping current species distribution pattern and molecular regulatory mechanism in controlling developmental process are important issues in biology. In this dissertation, Conandron ramondioides was used to study these two issues. The reasons are 1. East China Sea (ECS) seafloor connected Asia continent and adjacent islands repeatedly due to sea level lowering during glacial period since Quaternary. First, whether current scatter and disjunct distributed C. ramondioides populations (distributed in Honshu, Shikoku, Kyushu, Southeast China, Taiwan and Iriomote) disperse through ECS landbridge in the past? Second, floral symmetry determining gene expressed in dorsal region in zygomorphic flower species. Whether floral symmetry determining genes alter their expression pattern in C. ramondioides, which have actinomorphic flower? Third, multiple floral symmetry determining genes (GCYCs) were isolated from Asiatic Trichosporeae species, including actinomorphic flower species (e.g. C. ramondioides) and zygomorphic flower species (e.g. Hemiboea bicornuta and Lysionotus pauciflorus). To trace what kind of selection force in maintaining multiple GCYCs and find association between divergent expression pattern of duplicated GCYCs in both actinomorphic and zygomorphic flower species in Asiatic Trichosporeae species are the third research aim in this dissertation.
First, reconstructed multiloci phylogeny showed that current scatter and disjunct distributed C. ramondioides populations form three geographical corresponding groups, including Honshu-Shikoku, Southeast China and Taiwan-Iriomote group. Lack of shared haplotypes and restricted gene flow among groups suggested migration of C. ramondioides populations through ECS landbridge is unlikely. My results suggested ECS landbridge serves as filter instead of dispersal corridor for C. ramondioides populations. Second, RT-PCR results showed there is no GCYCs expression in flower in C. ramondioides. Thus, loss of dorsal region specific floral symmetry determining genes (GCYCs) expression in C. ramondioides has evolved to switch zygomorphy to actinomorphy. Third, GCYCs isolated from Asiatic Trichosporeae species with divergent expression pattern in flower formed GCYC1 clade, comprising GCYC1C subclade and GCYC1D subclade. Relaxation from selection right after the GCYC1 duplication (ω pre-duplication = 0.2819, ω post-duplication = 0.3985) was detected among GCYC1C and GCYC1D. Expression pattern of GCYC genes of selected zygomorphic flower species (Hemiboea bicornuta and Lysionotus pauciflorus) exhibits dorsal restricted and copy specific pattern (GCYC1C for H. bicornuta and GCYC1D for L. pauciflorus). Together with previously published data, it appeared that GCYC1C and GCYC1D copies diversified their expression in a distinct species-specific pattern. I propose that the selection relaxation after the GCYC1 duplication created an 'evolutionary window of flexibility' in which multiple copies were retained with randomly diverged roles for dorsal-specific expressions in association with floral symmetry changes.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:19:11Z (GMT). No. of bitstreams: 1
ntu-108-D97b44004-1.pdf: 5606517 bytes, checksum: d419588beac5397f729f67b48f0b2f91 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContent
摘要 I
Abstract III
List of Figures VII
List of Tables IX
Chapter 1 General introduction 1
1.1 Discovery and taxonomic treatment of Conandron ramondioides 2
1.2 Population biology and geographic distribution 2
1.3 Reversal to actinomorphy of Conandron in Gesneriaceae 3
1.4 GCYC gene evolution in Gesneriaceae 5
1.5 Objectives of this study 6
Chapter 2 East China Sea continental shelf served as a filter in shaping lineage divergence of East Asia relic understory herb: inference from multi-loci phylogeography and ecological niche modeling of Conandron ramondioides (Gesneriaceae) 7
Abstract 8
Introduction 10
Material and methods 13
Results 22
Discussion 31
Supporting information 51
Chapter 3 Expression shifts of floral symmetry genes correlate to flower actinomorphy in East Asia endemic Conandron ramondioides (Gesneriaceae) 60
Abstract 61
Introduction 62
Material and methods 66
Results 70
Discussion 73
Supporting files 84
Chapter 4 Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae 87
Abstract 88
Introduction 89
Materials and Methods 95
Results 102
Discussion 106
Supporting files 125
Chapter 5 General discussion, future work 139
Reference 145
List of Figures
Fig. 2-1 Map showing sample locations of C. ramondioides. 39
Fig. 2-2 Statistical parsimony network of the 6 loci haplotypes of C. ramondioides from Honshu, Shikoku, Taiwan, Iriomote and Southeast-China. 40
Fig. 2-3 Phylogeny of sampled C. ramondioides populations reconstructed by *BEAST2. 41
Fig. 2-4 Lineage divergent time inferred from multi population IMa2 analysis within C. ramondioies. 42
Fig. 2-5 Population divergence within C. ramondioies inferred from pairwise IMa2 analysis. 43
Fig. 2-6 The effective population size change over time of C. ramondioides groups. 44
Fig. 2-7 Modeled climatically suitable areas of Conandron groups in East Asia during Last Glacial Maximum and present. 45
Fig. 3-1 The flower of C. ramondioides from early to late stage. 77
Fig. 3-2 The SEM photos of morphological development process of Conandron ramondioides flowers. 78
Fig. 3-3 Alignments of protein sequences of CrCYC, CrRAD and CrDIV genes with homologs from Antirrhinum majus (CYC, RAD and DIV) and Bournea leiophylla (BlCYC1, BlCYC2, BlRAD, BlDIV1 and BlDIV2). 79
Fig. 3-4 Neighbour‑joining trees of CYC‑like, RAD‑like and DIV‑like genes. 81
Fig. 3-5 Gene‑specific reverse transcriptase polymerase chain reaction (RT‑PCR) analysis of CrCYC, CrRAD and CrDIV genes from C. ramondioides buds and dissected flower tissues. 83
Fig. 4-1 Flower morphology and developmental stages of Conandron ramondioides, Hemiboea bicornuta, and Lysionotus pauciflorus. 115
Fig. 4-2 Branch models used in PAML analyses. 116
Fig. 4-3 Genealogy and duplication events of GCYC in Gesneriaceae. 118
Fig. 4-4 Expression pattern of GCYC in floral parts of Conandron ramondioides, Hemiboea bicornuta, and Lysionotus pauciflorus. 119
Fig. 4-5 GCYC1 phylogenetic tree with summarized GCYC1C and GCYC1D expression pattern in tribe Trichosporeae species. 120
Fig. 4-6 Reconstructed ECE-CYC2 evolution emphasizing shifts of GCYC expression pattern after gene duplication in correlation to floral symmetry transitions among selected Asiatic Trichosporeae species. 121
Fig. 5-1 Corolla lobe-length and tube-length plot of investigated Conandron individuals. 144
List of Tables
Table 2-1. Collection sites, haplotype number (No. seq), haplotype diversity (Hd), nucleotide diversity (π), haplotype distribution and neutrality tests of the 21 Conandron populations sampled in East Asia. 46
Table 2-2. Pairwise FST estimates from 3 loci among Conandron groups 48
Table 2-3. Hierarchical analysis of molecular variance (AMOVA) of Conandron obtained from sequences of three loci respectively. 49
Table 2-4. McDonald-Kreitman tests of CrCYC1C haplotypes by using three Gesneriaceae species as outgroups. 50
Table 2-5. Neutrality tests of 4 molecular markers estimated from China populations. 50
Table 4-1 Parameter estimates under branch and branch-site models of GCYC1C and GCYC1D in tribe Trichosporeae. 123
dc.language.isoen
dc.subject反轉zh_TW
dc.subject苦苣苔zh_TW
dc.subject傳播廊道zh_TW
dc.subject過濾屏障zh_TW
dc.subject花對稱性zh_TW
dc.subject突變種zh_TW
dc.subjectGCYCzh_TW
dc.subject重複事件zh_TW
dc.subject遺傳限制釋放zh_TW
dc.subjectdispersal corridoren
dc.subjectConandron ramondioidesen
dc.subjectrelaxation.en
dc.subjectduplicationen
dc.subjectGCYCen
dc.subjectpeloriaen
dc.subjectreversalen
dc.subjectfloral symmetryen
dc.subjectfilteren
dc.title東亞特有種苦苣苔親緣地理、花發育及花對稱性基因自然選汰zh_TW
dc.titlePhylogeography, flower development and selection on floral symmetry gene in East Asia endemic Conandron ramondioidesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃士穎,廖培鈞,謝宗欣,江友中
dc.subject.keyword苦苣苔,傳播廊道,過濾屏障,花對稱性,反轉,突變種,GCYC,重複事件,遺傳限制釋放,zh_TW
dc.subject.keywordConandron ramondioides,dispersal corridor,filter,floral symmetry,reversal,peloria,GCYC,duplication,relaxation.,en
dc.relation.page161
dc.identifier.doi10.6342/NTU201901203
dc.rights.note有償授權
dc.date.accepted2019-07-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-D97b44004-1.pdf
  未授權公開取用
5.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved