請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言 | zh_TW |
| dc.contributor.advisor | Lee-Yan Sheen | en |
| dc.contributor.author | 吳偉愷 | zh_TW |
| dc.contributor.author | Wei-Kai Wu | en |
| dc.date.accessioned | 2021-07-11T15:18:24Z | - |
| dc.date.available | 2024-07-26 | - |
| dc.date.copyright | 2019-07-31 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 參考文獻
1. Wang ZN, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu XM, Chung YM, Wu YP, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-U82. doi:10.1038/nature09922. 2. Tang WHW, Wang ZE, Levison BS, Koeth RA, Britt EB, Fu XM, Wu YP, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl J Med. 2013;368:1575-1584. doi:10.1056/NEJMoa1109400. 3. Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204-4211. doi:10.1172/Jci72331. 4. Tilg H. A gut feeling about thrombosis. New Engl J Med. 2016;374:2494-2496. doi:10.1056/NEJMcibr1604458. 5. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242-249. doi:10.1038/nature11552. 6. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56-64. doi:10.1038/nature18846. 7. Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157-181. doi:10.1146/annurev-nutr-071816-064732. 8. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16:171-181. doi:10.1038/nrmicro.2017.149. 9. Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14:79-87. doi:10.1038/nrcardio.2016.183. 10. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond). 2010;7:30. doi:10.1186/1743-7075-7-30. 11. Koeth RA, Wang ZE, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu XM, Wu YP, Li L, Smith JD, DiDonato JA, Chen J, Li HZ, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-585. doi:10.1038/nm.3145. 12. Evans AM, Fornasini G. Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42:941-67. doi:10.2165/00003088-200342110-00002. 13. Senthong V, Wang ZN, Fan YY, Wu YP, Hazen SL, Tang WHW. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc. 2016;5. doi:ARTN e00423710.1161/JAHA.116.004237. 14. Li XSM, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, Rodondi N, Nanchen D, Muller O, Miranda MX, Matter CM, Wu YP, Li L, Wang ZN, Alamri HS, Gogonea V, Chung YM, Tang WHW, Hazen SL, Luscher TF. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814-824. doi:10.1093/eurheartj/ehw582. 15. Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes - an updated review of the evidence. Curr Atheroscler Rep. 2012;14:515-524. doi:10.1007/s11883-012-0282-8. 16. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang ZN, Gregory JC, Org E, Wu YP, Li L, Smith JD, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20:799-812. doi:10.1016/j.cmet.2014.10.006. 17. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111-124. doi:10.1016/j.cell.2016.02.011. 18. Wang ZN, Roberts AB, Buffa JA, Levison BS, Zhu WF, Org E, Gu XD, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu XM, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL. Non-lethal Inhibition of Gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585-1595. doi:10.1016/j.cell.2015.11.055. 19. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210-15. doi:10.1128/mBio.02210-15. 20. Wu WK, Panyod S, Ho CT, Kuo CH, Wu MS, Sheen LY. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota. J Funct Foods. 2015;15:408-417. doi:10.1016/j.jff.2015.04.001. 21. Chiu TH, Huang HY, Chen KJ, Wu YR, Chiu JP, Li YH, Chiu BC, Lin CL, Lin MN. Relative validity and reproducibility of a quantitative FFQ for assessing nutrient intakes of vegetarians in Taiwan. Public Health Nutr. 2014;17:1459-66. doi:10.1017/S1368980013001560. 22. Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the dog. Arch Biochem Biophys. 1983;220:60-70. doi:10.1016/0003-9861(83)90387-9. 23. Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2. doi:10.1128/mSystems.00127-16. 24. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. Peerj. 2016;4. doi:ARTN e258410.7717/peerj.2584. 25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6. doi:10.1038/nmeth.f.303. 26. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32-46. doi: 10.1111/j.1442-9993.2001.01070.pp.x. 27. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12. doi:ARTN R6010.1186/gb-2011-12-6-r60. 28. Ridaura VK, Faith JJ, Rey FE, Cheng JY, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1079-U49. doi:10.1126/science.1241214. 29. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, Lusis AJ, Hazen SL. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-60. doi:10.1074/jbc.M114.618249. 30. Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5. doi:ARTN 5410.1186/s40168-017-0271-9. 31. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res. 2017;61. doi:10.1002/mnfr.201600324. 32. Ozcelik AT, Demirdogen BC, Demirkaya S, Adali O. Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke. Gene. 2013;521:116-121. doi:10.1016/j.gene.2013.03.010. 33. do Rosario VA, Fernandes R, Trindade EBSD. Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease. Nutr Rev. 2016;74:444-454. doi:10.1093/nutrit/nuw012. 34. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li HZ, Bushman FD, Lewis JD. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63-72. doi:10.1136/gutjnl-2014-308209. 35. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183-1196. doi:10.1161/Circresaha.117.309715. 36. Zhu Y, Jameson E, Crosatti M, Schafer H, Rajakumar K, Bugg TD, Chen Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA. 2014;111:4268-73. doi:10.1073/pnas.1316569111. 37. Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aakhus S, Gude E, Bjorndal B, Halvorsen B, Karlsen TH, Aukrust P, Gullestad L, Berge RK, Yndestad A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277:717-726. doi:10.1111/joim.12328. 38. Tang WHW, Wang ZN, Fan YY, Levison B, Hazen JE, Donahue LM, Wu YP, Hazen SL. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure refining the gut hypothesis. J Am Coll Cardiol. 2014;64:1908-1914. doi:10.1016/j.jacc.2014.02.617. 39. Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, Potter MA, Yusuf S, Anand SS, McQueen MJ. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol. 2015;31:1189-1194. doi:10.1016/j.cjca.2015.06.016. 40. Skagen K, Troseid M, Ueland T, Holm S, Abbas A, Gregersen I, Kummen M, Bjerkeli V, Reier-Nilsen F, Russell D, Svardal A, Karlsen TH, Aukrust P, Berge RK, Hov JER, Halvorsen B, Skjelland M. The carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis. 2016;247:64-69. doi:10.1016/j.atherosclerosis.2016.01.033. 41. Wang S, Xia GH, He Y, Liao SX, Yin J, Sheng HF, Zhou HW. Distribution characteristics of trimethylamine N-oxide and its association with gut microbiota. J South Med Univ. 2016;36(4):455-460. doi: 10.3969/j.issn.1673-4254.2016.04.02 42. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA. 2012;109:21307-12. doi:10.1073/pnas.1215689109. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78774 | - |
| dc.description.abstract | 近期研究發現腸道菌在人體內所產生氧化三甲胺(TMAO)在心血管疾病上扮演了重要角色。本論文第一章藉由藥物動力學的測試,並招募葷食與素食受試者進行確效實驗,建立一個具臨床實用性的肉鹼耐量試驗(oral carnitine challenge test, OCTT),藉此測量飲食-腸道菌-宿主間交互作用產生TMAO的能力。結果顯 示葷食者的腸道菌比素食者有較高的TMAO生成能力,而OCCT相較空腹TMAO對於辨別腸道菌生成TMAO能力有顯著較佳效果。而在相同時間採集的血液中與尿液中的TMAO濃度,呈現非常顯著的正相關(r = 0.92, p<0.0001),有助於提升OCCT臨床應用的可行性,未來此檢測有機會作為是否建議減少紅肉攝取的個人化營養參考依據。在第二章中,我們讓招募的葷素食者受試著在不改變原本飲食習慣的情況下,連續每日服用肉鹼補充錠一個月,並且在介入前後進行OCCT,觀察腸道菌TMAO產能是否有所改變,並採集服用肉鹼一個月前後的糞便進行菌相分析。結果發現,服用一個月肉鹼補充錠後,葷食者空腹 TMAO上升的程度較素食者明顯。不過,素食者腸道菌生成TMAO的產能(OCCT TMAOAUC and TMAOMAX)增加的情形則較葷食者顯著。我們發亦現原先腸道菌產能較低的TMAO低產能者(TMAOMAX <10 μM),在服用肉鹼補充劑一個月後,其 TMAO的產能有顯著上升(p=0.0003)的情形,並且有23%的TMAO低產能者變成了TMAO高產能者,但對TMAO高產能者來說,服用肉鹼補充錠一個月對腸道菌TMAO生成能力並無明顯影響。此外,我們發現血中肉鹼低於20 μM時,腎臟會傾向將 肉鹼留在身體內,且素食者與TMAO低產能者有較高的肉鹼生物利用率。在菌相分析部分,我們發現TMAO高產能與低產能者有微幅顯著的差異,不過介入肉鹼補充劑一個月後對腸道菌相並沒有造成顯著改變,以16S rRNA片段分析則發現 Ruminococcaceae與Eubacterium這兩群細菌,在TMAO高產能者有顯著增加的情形。本論文第三章的部分,我們參考克里夫蘭Stanley Hazen團隊2019年發表Emergencia timonesis能將gamma- butyrobetaine(gBB)代謝成TMA,並可能是決定人體腸道菌TMAO高產能者重要菌種的發現,針對我們的研究數據進行分析。發現Emergencia timonesis僅能解釋四分之一的TMAO高產能者,且目前將gBB轉換成TMA的基因表現與蛋白質合成仍未清楚。因此,我們利用我們所開發的OCCT與相關菌相數據,以多體學的方式搭配仿人體腸道菌鼠模型進行研究,嘗試找出TMAO高產能者將gBB轉換成TMA的腸道菌種並進行分離培養,希望能找出相對應的基因序列與酵素,作為開發抑制腸道菌減少TMA合成的新藥標的。 | zh_TW |
| dc.description.abstract | Recently, a gut microbiota-generated metabolite, the trimethylamine N-oxide (TMAO), was proved to play important role in cardiovascular disease. In the first chapter of this thesis, we developed a practical oral carnitine challenge test (OCCT) in clinical scenario based on pharmacokinetics study and a validation in a cohort composed of omnivores and vegetarians. The OCCT well demonstrate the interactions between diet, gut microbiota, and the host in producing TMAO in human body. Our results showed the omnivores had stronger TMAO producing capacity as compared with vegetarians and the OCCT also had better discriminative power than fasting TMAO in identifying the gut microbial function of TMAO production. Besides, we found very significant correlation between plasma and urine TMAO (r = 0.92, p<0.0001) and may promote the feasibility of this test in clinical use. The OCCT may also serve as a reference of personalized nutrition in guiding the control of red meat consumption.
In the second chapter, these recruited omnivores and vegetarians were supplemented with carnitine tablet once daily for 1 month without change of original diet habit. The OCCT was performed before and after the period of carnitine supplementation for each individual to know whether the TMAO producing capacity from gut microbiota would be changed. Stool samples were also collected during each OCCT. The omnivores demonstrated higher fasting TMAO after carnitine supplementation as compared with vegetarians. However, the vegetarians exhibited more significant increased TMAO producing capacity (OCCT TMAOAUC and TMAOMAX) as compared with omnivores. We also noticed that the TMAO production capacity in TMAO low producer (TMAOMAX <10 μM) could be enhanced significantly after carnitine supplementation, and there were about 23% TMAO low producer shifting to TMAO high producer after 1-month carnitine supplementation. In contrast, the TMAO production capacity in TMAO high producers was not altered during the intervention. Besides, we found the kidney tend to preserve the carnitine in the body as while excrete TMAO as wastes. The vegetarians and TMAO low producers also had better bioavailability of carnitine. For the microbiome analysis, we found significant but mild difference of gut microbial profiles between TMAO high and low producers, but no significant alteration of compositional profile was found for the carnitine supplementation. We also found the groups of Ruminococcacea and Eubacterium were enriched in TMAO high producers. In the third chapter, we reanalyze our microbiome data according the recent discovery from the team of Stanley Hazen that Emergencia timonesis can convert gamma- butyrobetaine (gBB) into TMA and may be a key in TMAO production in vivo. However, we only detected this microbe in the samples from 25% of our TMAO high producer subjects. Since the genes and protein responsible for converting gBB into TMA remains unknown, we attempted to find solution by using multi-omic approach and humanized gnotobiotic model in order to elucidate the relevant gene sequences and enzyme. By doing so, we hope we can find a new target for reducing TMA synthesis in the gut and for drug development. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:18:24Z (GMT). No. of bitstreams: 1 ntu-108-F02641032-1.pdf: 9207713 bytes, checksum: 37d0630a3c9f1cc2bec0720ea52974ec (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄
論文審訂書.......................................................................................1 中文摘要..........................................................................................2 Abstract.........................................................................................3 緒論................................................................................................4 第一章 建立口服肉鹼耐量試驗作為檢測來自人體內飲食-腸道菌-宿主間交互用 於氧化三甲胺產能之臨床評估方法 第一節 摘要.....................................................................................5 第二節 引言.....................................................................................7 第三節 研究方法..............................................................................9 第四節 結果與討論.........................................................................15 第五節 表格與圖示.........................................................................22 第二章 探討葷素食者介入肉鹼補充劑後腸道菌氧化三甲胺之產能變化 第一節 摘要...................................................................................36 第二節 結果與討論 ........................................................................38 第三章 以多體學分析不同氧化三甲胺產能之菌相找出腸道中生成三甲胺之關 鍵菌種 第一節 摘要...................................................................................50 第二節 結果與討論.........................................................................51 參考文獻.......................................................................................58 附錄一:博士論文口試問答紀錄........................................................63 附錄二:論文研究之計畫書...............................................................65 附錄三:著作目錄............................................................................82 附錄四:研究計畫、獲獎與演講........................................................84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肉鹼耐量試驗 | zh_TW |
| dc.subject | 腸道菌 | zh_TW |
| dc.subject | 氧化三甲胺 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 肉鹼補充劑 | zh_TW |
| dc.subject | oral carnitine challenge test | en |
| dc.subject | cardiovascular disease | en |
| dc.subject | trimethylamine N-oxide | en |
| dc.subject | gut microbiota | en |
| dc.subject | carnitine supplement | en |
| dc.title | 探討人體腸道菌代謝肉鹼與生成氧化三甲胺產能之研究 | zh_TW |
| dc.title | Investigation on Carnitine Metabolism and TMAO Production Capacity in Human Gut Microbiota | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 吳明賢 | zh_TW |
| dc.contributor.coadvisor | Ming-Shiang Wu | en |
| dc.contributor.oralexamcommittee | 郭錦樺;廖本揚;高憲立 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Hua Kuo;Ben-Yang Liao;Shien-Li Kao | en |
| dc.subject.keyword | 心血管疾病,肉鹼耐量試驗,氧化三甲胺,腸道菌,肉鹼補充劑, | zh_TW |
| dc.subject.keyword | cardiovascular disease,oral carnitine challenge test,trimethylamine N-oxide,gut microbiota,carnitine supplement, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU201901408 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2024-07-31 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 8.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
