Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新zh_TW
dc.contributor.author黃湘涵zh_TW
dc.contributor.authorHsiang-Han Huangen
dc.date.accessioned2021-07-11T15:14:28Z-
dc.date.available2024-08-13-
dc.date.copyright2019-08-15-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] O Dernovsek, M Eberstein, W Schiller, A Naeini, G Preu, and W Wersing, LTCC glass-ceramic composites for microwave application. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1693-1697.
[2] NM Alford and SJ Penn, Sintered alumina with low dielectric loss. Journal of Applied Physics, 1996. 80(10): p. 5895-5898.
[3] P Mokrý, A Tagantsev, and N Setter, Size effect on permittivity in ferroelectric polydomain thin films. Physical Review B, 2004. 70(17): p. 172107.
[4] K Manu, P Anjana, and M Sebastian, Low permittivity SrCuSi4O10–LMZBS glass composite for LTCC applications. Materials letters, 2011. 65(3): p. 565-567.
[5] Y Shi, Y Chai, and S Hu, Preparation and Characterization of Printed LTCC Substrates for Microwave Devices. Active and Passive Electronic Components, 2019. 2019.
[6] LH Cohen, W Klement Jr, and GC Kennedy, Melting of copper, silver, and gold at high pressures. Physical Review, 1966. 145(2): p. 519.
[7] J-j Bian, D-W Kim, and KS Hong, Glass-free LTCC microwave dielectric ceramics. Materials research bulletin, 2005. 40(12): p. 2120-2129.
[8] T Rabe, M Gemeinert, and WA Schiller. Development of advanced low temperature co-fired ceramics (LTCC). in Key Engineering Materials. 2004. Trans Tech Publ.
[9] J Zhou, Towards rational design of low-temperature co-fired ceramic (LTCC) materials. Journal of Advanced Ceramics, 2012. 1(2): p. 89-99.
[10] A Bhalla, R Guo, and R Roy, The perovskite structure—a review of its role in ceramic science and technology. Materials research innovations, 2000. 4(1): p. 3-26.
[11] Z Wang, M Cao, Z Yao, G Li, Z Song, W Hu, H Hao, H Liu, and Z Yu, Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceramics International, 2014. 40(1): p. 929-933.
[12] NH Chan, R Sharma, and DM Smyth, Nonstoichiometry in SrTiO3. Journal of The Electrochemical Society, 1981. 128(8): p. 1762-1769.
[13] L Golonka, J Kita, T Zawada, and A Dziedzic, LTCC in microsystems application. INFORMACIJE MIDEM-LJUBLJANA-, 2002(4): p. 272-279.
[14] D Thomas, P Abhilash, and MT Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. Journal of the European Ceramic Society, 2013. 33(1): p. 87-93.
[15] A Veber, Š Kunej, and D Suvorov, Synthesis and microstructural characterization of Bi12SiO20 (BSO) thin films produced by the sol–gel process. Ceramics International, 2010. 36(1): p. 245-250.
[16] S Hildebrandt and K-J Wolter. Thin film structuring on LTCC. in 2008 31st International Spring Seminar on Electronics Technology. 2008. IEEE.
[17] V Sunappan, A Periannan, CK Meng, and WC Khuen. Process issues and characterization of LTCC substrates. in 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No. 04CH37546). 2004. IEEE.
[18] D Hotza and P Greil, Aqueous tape casting of ceramic powders. Materials Science and Engineering: A, 1995. 202(1-2): p. 206-217.
[19] A Sinha, H Levinstein, and T Smith, Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. Journal of applied physics, 1978. 49(4): p. 2423-2426.
[20] JP Guha, DJ Hong, and HU Anderson, Effect of Excess PbO on the Sintering Characteristics and Dielectric Properties of Pb (Mg1/3Nb2/3) O3–PbTiO3‐Based Ceramics. Journal of the American Ceramic Society, 1988. 71(3): p. C‐152-C‐154.
[21] M Valant and D Suvorov, Chemical compatibility between silver electrodes and low‐firing binary‐oxide compounds: conceptual study. Journal of the American Ceramic Society, 2000. 83(11): p. 2721-2729.
[22] A Chaouchi, S d’Astorg, S Marinel, and M Aliouat, ZnTiO3 ceramic sintered at low temperature with glass phase addition for LTCC applications. Materials chemistry and physics, 2007. 103(1): p. 106-111.
[23] M Valant and D Suvorov, Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates. Journal of the European Ceramic Society, 2004. 24(6): p. 1715-1719.
[24] G Subodh and M Sebastian, Glass‐free Zn2Te3O8 microwave ceramic for LTCC applications. Journal of the American Ceramic Society, 2007. 90(7): p. 2266-2268.
[25] D Thomas and MT Sebastian, Temperature‐Compensated LiMgPO4: A New Glass‐Free Low‐Temperature Cofired Ceramic. Journal of the American Ceramic Society, 2010. 93(11): p. 3828-3831.
[26] JJ Bian and JY Wu, Designing of Glass‐Free LTCC Microwave Ceramic‐Ca1− x (Li0. 5Nd0. 5) xWO4 by Crystal Chemistry. Journal of the American Ceramic Society, 2012. 95(1): p. 318-323.
[27] A Jaworski and G Bolton, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity. Measurement Science and Technology, 2000. 11(6): p. 743.
[28] Q-L Zhang, H Yang, and H-P Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society, 2008. 28(3): p. 605-609.
[29] A Koornneef and CM Pieterse, Cross talk in defense signaling. Plant physiology, 2008. 146(3): p. 839-844.
[30] H Ohasto, T Tsunooka, M Ando, Y Ohishi, and Y Miyauchi, Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. Journal of the Korean Ceramic Society, 2003. 40(4): p. 350-353.
[31] P Goel, MEMS non-silicon fabrication technologies. Sensors & Transducers, 2012. 139(4): p. 1.
[32] PE Garrou and I Turlik, Multichip module technology handbook. Vol. 688. 1998: McGraw-Hill New York.
[33] Y Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. 2005: Springer Science & Business Media.
[34] CQ Scrantom, LTCC technology: Where we are and where we’re going, in MCM C/Mixed Technologies and Thick Film Sensors. 1995, Springer. p. 77-87.
[35] C Kim, P Park, D-Y Kim, K-H Park, M Park, M-K Cho, SJ Lee, J-G Kim, YS Eo, and J Park. A CMOS centric 77GHz automotive radar architecture. in 2012 IEEE Radio Frequency Integrated Circuits Symposium. 2012. IEEE.
[36] LK Yeung, J Wang, Y Huang, S-C Lee, and K-L Wu. Development of an integrated LTCC Bluetooth module. in 2005 Asia-Pacific Microwave Conference Proceedings. 2005. IEEE.
[37] G Brzezina, L Roy, and L MacEachern. A miniature LTCC bandpass filter using novel resonators for GPS applications. in 2007 European Microwave Conference. 2007. IEEE.
[38] H Scholze, Glass: nature, structure, and properties. 2012: Springer Science & Business Media.
[39] GS Henderson, G Calas, and JF Stebbins, The structure of silicate glasses and melts. Elements, 2006. 2(5): p. 269-273.
[40] DR Uhlmann, A kinetic treatment of glass formation. Journal of Non-Crystalline Solids, 1972. 7(4): p. 337-348.
[41] JC Mauro, Y Yue, AJ Ellison, PK Gupta, and DC Allan, Viscosity of glass-forming liquids. Proceedings of the National Academy of Sciences, 2009. 106(47): p. 19780-19784.
[42] JF Shackelford and RH Doremus, Ceramic and glass materials. JF Shackelford, RH Doremus, 2008.
[43] H-I Hsiang, C-S Hsi, C-C Huang, and S-L Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. Journal of Alloys and Compounds, 2008. 459(1-2): p. 307-310.
[44] WD Callister and DG Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: John Wiley & Sons New York.
[45] C Bienert and A Roosen, Characterization and improvement of LTCC composite materials for application at elevated temperatures. Journal of the European Ceramic Society, 2010. 30(2): p. 369-374.
[46] KM Schwertz and JH Burge. Field guide to optomechanical design and analysis. 2012. SPIE Bellingham, WA.
[47] W Höland and GH Beall, Glass-ceramic technology. Vol. 346. 2012: Wiley Online Library.
[48] X Chen, W Zhang, S Bai, and Y Du, Densification and characterization of SiO2-B2O3-CaO-MgO glass/Al2O3 composites for LTCC application. Ceramics International, 2013. 39(6): p. 6355-6361.
[49] DW Henderson, Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. Journal of Non-Crystalline Solids, 1979. 30(3): p. 301-315.
[50] J-H Jean and T Gupta, Liquid-phase sintering in the glass-cordierite system. Journal of materials science, 1992. 27(6): p. 1575-1584.
[51] OH Kwon and GL Messing, Kinetic analysis of solution‐precipitation during liquid‐phase sintering of alumina. Journal of the American Ceramic Society, 1990. 73(2): p. 275-281.
[52] J Marion, C Hsueh, and A Evans, Liquid‐phase sintering of ceramics. Journal of the American Ceramic Society, 1987. 70(10): p. 708-713.
[53] O-H Kwon and GL Messing, A theoretical analysis of solution-precipitation controlled densification during liquid phase sintering. Acta metallurgica et materialia, 1991. 39(9): p. 2059-2068.
[54] W Kingery, Densification during sintering in the presence of a liquid phase. I. Theory. Journal of Applied Physics, 1959. 30(3): p. 301-306.
[55] T Ostrowski, A Ziegler, RK Bordia, and J Rödel, Evolution of Young's Modulus, Strength, and Microstructure during Liquid‐Phase Sintering. Journal of the American Ceramic Society, 1998. 81(7): p. 1852-1860.
[56] WJ Huppmann and G Petzow, The role of grain and phase boundaries in liquid phase sintering. Berichte der Bunsengesellschaft für physikalische Chemie, 1978. 82(3): p. 308-312.
[57] J-R Kim, D-W Kim, I-S Cho, BS Kim, J-s An, and KS Hong, Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications. Journal of the European Ceramic Society, 2007. 27(8-9): p. 3075-3079.
[58] H Ren, M Dang, H Wang, T Xie, S Jiang, H Lin, and L Luo, Sintering behavior and microwave dielectric properties of B2O3-La2O3-MgO-TiO2 based glass-ceramic for LTCC applications. Materials Letters, 2018. 210: p. 113-116.
[59] U Došler, MM Kržmanc, and D Suvorov, Phase evolution and microwave dielectric properties of MgO–B2O3–SiO2–based glass–ceramics. Ceramics International, 2012. 38(2): p. 1019-1025.
[60] K-t Wang, Y He, Z-y Liang, and X-m Cui, Preparation of LTCC materials with adjustable permittivity based on BaO–B2O3–SiO2/BaTiO3 system. Materials Research Bulletin, 2015. 65: p. 249-252.
[61] H Zhu, H Zhou, M Liu, P Wei, and G Ning, Low temperature sintering and properties of CaO–B2O3–SiO2 system glass ceramics for LTCC applications. Journal of Alloys and Compounds, 2009. 482(1-2): p. 272-275.
[62] RM German, Liquid phase sintering. 2013: Springer Science & Business Media.
[63] R Kerner and M Micoulaut, On the glass transition temperature in covalent glasses. Journal of non-crystalline solids, 1997. 210(2-3): p. 298-305.
[64] C Dileep Kumar, E Sunny, N Raghu, N Venkataramani, and AR Kulkarni, Synthesis and Characterization of Crystallizable Anorthite‐Based Glass for a Low‐Temperature Cofired Ceramic Application. Journal of the American Ceramic Society, 2008. 91(2): p. 652-655.
[65] A Borhan, M Gromada, G Nedelcu, and L Leontie, Influence of additives (CoO, CaO, B2O3) on thermal and dielectric properties of BaO-Al2O3-SiO2 glass-ceramic sealant for OTM applications. arXiv preprint arXiv:1507.03390, 2015.
[66] DL Griscom, Borate glass structure, in Borate Glasses. 1978, Springer. p. 11-138.
[67] C Cramer, K Funke, T Saatkamp, D Wilmer, and M Ingram, High-frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Zeitschrift für Naturforschung A, 1995. 50(7): p. 613-623.
[68] H Yu, J Liu, W Zhang, and S Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. Journal of Materials Science: Materials in Electronics, 2015. 26(12): p. 9414-9423.
[69] J Krogh-Moe, The structure of vitreous and liquid boron oxide. Journal of Non-Crystalline Solids, 1969. 1(4): p. 269-284.
[70] W Huang, DE Day, K Kittiratanapiboon, and MN Rahaman, Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. Journal of Materials Science: Materials in Medicine, 2006. 17(7): p. 583-596.
[71] MM Smedskjaer, JC Mauro, RE Youngman, CL Hogue, M Potuzak, and Y Yue, Topological principles of borosilicate glass chemistry. The Journal of Physical Chemistry B, 2011. 115(44): p. 12930-12946.
[72] R Müller, R Meszaros, B Peplinski, S Reinsch, M Eberstein, WA Schiller, and J Deubener, Dissolution of alumina, sintering, and crystallization in glass ceramic composites for LTCC. Journal of the American Ceramic Society, 2009. 92(8): p. 1703-1708.
[73] M Liu, H Zhou, X Xu, Z Yue, M Liu, and H Zhu, Sintering, densification and crystallization of Ca–Al–B–Si–O glass/Al 2 O 3 composites for LTCC application. Journal of Materials Science: Materials in Electronics, 2013. 24(10): p. 3985-3994.
[74] C-L Huang, C-L Pan, and W-C Lee, Microwave dielectric properties of mixtures of glass-forming oxides Zn–B–Si and dielectric ceramics MgTiO3–CaTiO3 for LTCC applications. Journal of Alloys and Compounds, 2008. 462(1-2): p. L5-L8.
[75] J Isard, A study of the migration loss in glass and a generalized method of calculating the rise of dielectric loss with temperature. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 1962. 109(22S): p. 440-447.
[76] H Weaver, Dielectric properties of single crystals of SrTiO3 at low temperatures. Journal of Physics and Chemistry of Solids, 1959. 11(3-4): p. 274-277.
[77] T Nordmann, Epitaxy of ultrathin nickel ferrite films on MgO (001) and SrTiO3 (001). Master-Arbeit, Universität Osnabrück, 2016.
[78] AM Badr, HA Elshaikh, and IM Ashraf, Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. Journal of Modern Physics, 2011. 2(01): p. 12.
[79] Z Wu, M Cao, Z Shen, H Yu, Z Yao, D Luo, and H Liu, Effect of glass additive on microstructure and dielectric properties of SrTiO3 ceramics. Ferroelectrics, 2007. 356(1): p. 95-101.
[80] U Selvaraj, AV Prasadarao, S Komarneni, and R Roy, Sol-gel processing of oriented SrTiO3 thin films. Materials Letters, 1995. 23(1-3): p. 123-127.
[81] M Iwabuchi and T Kobayashi, Growth and characterization of epitaxial SrTiO3 thin films with prominent polarizability. Journal of applied physics, 1994. 75(10): p. 5295-5301.
[82] M Kamalasanan, N Deepak Kumar, and S Chandra, Structural, optical, and dielectric properties of sol‐gel derived SrTiO3 thin films. Journal of applied physics, 1993. 74(1): p. 679-686.
[83] R Thomas, D Dube, M Kamalasanan, S Chandra, and A Bhalla, Structural, electrical, and low-temperature dielectric properties of sol–gel derived SrTiO 3 thin films. Journal of applied physics, 1997. 82(9): p. 4484-4488.
[84] H-C Li, W Si, AD West, and X Xi, Thickness dependence of dielectric loss in SrTiO 3 thin films. Applied physics letters, 1998. 73(4): p. 464-466.
[85] C Basceri, S Streiffer, AI Kingon, and R Waser, The dielectric response as a function of temperature and film thickness of fiber-textured (Ba, Sr) TiO 3 thin films grown by chemical vapor deposition. Journal of Applied Physics, 1997. 82(5): p. 2497-2504.
[86] ZY Shen, YM Li, ZM Wang, Y Hong, and RH Liao. Structural characteristics and dielectric properties of Nd-doped SrTiO3 ceramics by introducing Ti vacancies for valence compensation. in Advanced Materials Research. 2011. Trans Tech Publ.
[87] P Wise, I Reaney, W Lee, T Price, D Iddles, and D Cannell, Structure–microwave property relations in (SrxCa (1− x)) n+ 1TinO3n+ 1. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1723-1726.
[88] I Reaney, P Wise, W Lee, D Iddles, D Cannell, and T Price. Tunability of TCF in Ruddlesden-Popper compounds. in ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No. 00CH37076). 2000. IEEE.
[89] K Astafiev, V Sherman, A Tagantsev, N Setter, T Kaydanova, and D Ginley, Crossover between extrinsic and intrinsic dielectric loss mechanisms in SrTiO 3 thin films at microwave frequencies. Applied physics letters, 2004. 84(13): p. 2385-2387.
[90] V Gurevich and A Tagantsev, Intrinsic dielectric loss in crystals. Advances in Physics, 1991. 40(6): p. 719-767.
[91] MT Sebastian, Dielectric materials for wireless communication. 2010: Elsevier.
[92] L Guan, M Li, X Li, L Feng, F Teng, B Liu, Z Wei, and CB Musgrave, Electronic and dielectric properties of Ruddlesden–Popper type and Magnéli type SrTiO3. Computational Materials Science, 2015. 96: p. 223-228.
[93] S Šturm, A Rečnik, C Scheu, and M Čeh, Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO 3. Journal of Materials Research, 2000. 15(10): p. 2131-2139.
[94] L Amaral, AM Senos, and PM Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics. Materials Research Bulletin, 2009. 44(2): p. 263-270.
[95] R Sase, T Hoshina, H Takeda, and T Tsurumi, Effect of atomic vacancies on ionic polarization of nonstoichiometric strontium titanate ceramics. Japanese Journal of Applied Physics, 2017. 56(10S): p. 10PB11.
[96] P-Y Lesaicherre, H Yamaguchi, Y Miyasaka, H Watanabe, H Ono, and M Yoshida, SrTiO3 thin films by mocvd for 1 gbit DRAM application. Integrated Ferroelectrics, 1995. 8(1-2): p. 201-225.
[97] A Tkach, P Vilarinho, A Senos, and A Kholkin, Effect of nonstoichiometry on the microstructure and dielectric properties of strontium titanate ceramics. Journal of the European Ceramic Society, 2005. 25(12): p. 2769-2772.
[98] S Swartz, A Bhalla, L Cross, C Clark, and W Lawless, Low‐temperature dielectric properties of SrTiO3 glass‐ceramics. Journal of applied physics, 1986. 60(6): p. 2069-2080.
[99] S Hayward and E Salje, Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism. Phase Transitions, 1999. 68(3): p. 501-522.
[100] R Rawlings, J Wu, and A Boccaccini, Glass-ceramics: their production from wastes—a review. Journal of Materials Science, 2006. 41(3): p. 733-761.
[101] AK Sahu, D Kumar, O Parkash, O Thakur, and C Prakash, Effect of K2O/BaO ratio on crystallization, microstructure and dielectric properties of strontium titanate borosilicate glass ceramics. Ceramics International, 2004. 30(3): p. 477-483.
[102] O Thakur, D Kumar, O Parkash, and L Pandey, Effect of K2O addition on crystallization and microstructural behaviour of the strontium titanate-borosilicate glass-ceramic system. Materials Letters, 1995. 23(4-6): p. 253-260.
[103] A Kumar Yadav and C Gautam, A review on crystallisation behaviour of perovskite glass ceramics. Advances in Applied Ceramics, 2014. 113(4): p. 193-207.
[104] Y Liu, Y Wang, and JS Ma. Dielectric properties of LTCC system of Al2O3 and borosilicate glass. in Key Engineering Materials. 2007. Trans Tech Publ.
[105] G-I Shim, C-Y Kim, and S-Y Choi, Strengthening of borosilicate glass by controlled crystallisation for lightweight bulletproof materials. International Journal of Nanotechnology, 2013. 10(8/9): p. 632-642.
[106] J Park and A Ozturk, Effect of TiO2 addition on the crystallization and tribological properties of MgO–CaO–SiO2–P2O5–F glasses. Thermochimica Acta, 2008. 470(1-2): p. 60-66.
[107] E-S Lim, B-S Kim, J-H Lee, and J-J Kim, Characterization of the low temperature firing BaO–B2O3–SiO2 glass: The effect of BaO content. Journal of the European Ceramic Society, 2007. 27(2-3): p. 825-829.
[108] R Mishra, S Kumar, B Tomar, A Tyagi, C Kaushik, K Raj, and V Manchanda, Effect of barium on diffusion of sodium in borosilicate glass. Journal of hazardous materials, 2008. 156(1-3): p. 129-134.
[109] RM German, P Suri, and SJ Park, liquid phase sintering. Journal of materials science, 2009. 44(1): p. 1-39.
[110] W Kingery, E Niki, and M Narasimhan, Sintering of Oxide and Carbide‐Metal Compositions in Presence of a Liquid Phase. Journal of the American Ceramic Society, 1961. 44(1): p. 29-35.
[111] G Barbosa, A Chaves, and S Porto, Temperature dependence of the Raman cross sections in BaTiO3 and SrTiO3. Solid State Communications, 1972. 11(8): p. 1053-1055.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78719-
dc.description.abstract近年因對於微波應用之材料有更嚴苛之需求,而帶動了低溫共燒陶瓷的發展。在製備低溫共燒陶瓷時,陶瓷基板與電路電極一同燒結至緻密以避免過多的裂隙生成,因此燒結溫度需低於電極之熔點。然而一般而言,陶瓷燒結緻密的溫度皆遠高於電極熔點,因此如何有效降低陶瓷燒結溫度為本研究最主要的目標。此外為符合高傳輸效率及高可靠性的特性,本研究亦以低介電常數及高品質因子作為目標。
本研究於系統中加入玻璃相,以期望能借助其液相燒結的特性以降低陶瓷的燒結溫度。鈦酸鍶作為一介電性質優異的材料已被廣泛的研究,然而其作為低溫共燒陶瓷燒結溫度仍然過高,因此本研究選用玻璃-鈦酸鍶系統進行低溫燒結的研究。並且亦針對富有鍶或者富有鈦的鈦酸鍶與玻璃一同燒結的結果進行研究。
結果顯示,當玻璃含量超過60 wt%時,玻璃-鈦酸鍶系統將會燒結緻密並且連帶提升了品質因子。而富有鍶的鈦酸鍶系統表現出較低的品質因子,原因乃為在高溫下鍶更易與玻璃反應生成二次相。而介電常數則是受到玻璃含量的影響,當玻璃含量越高介電常數亦越低。在微波頻段下量測的Qхf值中,最高的為富有鈦的鈦酸鍶系統,其值為7089 GHz。
zh_TW
dc.description.abstractLow temperature co-fired ceramics (LTCC) are in rapid development for microwave applications due to its high reliability, low cost and high speed of signal propagating. For the process of LTCC components, the ceramics should sinter with electrodes. Therefore, the sintering temperature should be lower than the melting temperature of electrodes. Lowering the sintering temperature of ceramics is the key for LTCC process. Additionally, the relative permittivity is expected to be as low as possible to meet the requirements of high speed signal propagating; quality factor as high as possible due to the high reliability of LTCC.
There are several ways to lower the sintering temperature of ceramics. In the present study, the approach of adding low melting materials is chosen. Glass addition is believed to be the most effective way to lower the sintering temperature of ceramics via liquid phase sintering. Strontium titanate (SrTiO3) has been investigated widely due to its excellent dielectric properties. However, the sintering temperature of SrTiO3 is too high to be used for LTCC. Therefore, glass-SrTiO3 was chosen as ceramics systems to study the microwave properties. In addition, Sr-rich and Ti-rich SrTiO3 sintered with glass was investigated as well.
For the systems with glass content higher than 60 wt%, they exhibited higher quality factor. The Q for Sr-rich glass-SrTiO3 systems is low after sintering at high temperature due to the formation of second phases. The relative permittivity for the systems with higher glass content systems is low due to the presence of glass. At microwave frequency, the Qхf value was 7089 GHz for Ti-rich systems.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:14:28Z (GMT). No. of bitstreams: 1
ntu-108-R06527057-1.pdf: 10197729 bytes, checksum: 64831cc07890c615fdda93b64a086c6b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Literature survey 3
2.1 Low temperature co-fired ceramics 3
2.1.1 Preparation 3
2.1.2 Characteristic of LTCC 5
2.1.3 Applications 6
2.2 Properties of glass 7
2.2.1 Physical properties 7
2.2.2 Sintering behavior of glass 11
2.2.3 Types of glass 12
2.2.4 Dielectric properties 16
2.3 Properties of SrTiO3 17
2.3.1 Dielectric properties 17
2.3.2 Nonstoichiometric properties 23
2.3.3 SrTiO3 as LTCC material 26
Chapter 3 Experimental procedures 29
3.1 Processing 30
3.1.1 Raw powder 30
3.1.2 Solid state reaction 30
3.1.3 Pressing and sintering 32
3.2 Characterization 33
3.2.1 Particle size distribution 33
3.2.2 Composition identification 33
3.2.3 Phase identification 33
3.2.4 Relative density 33
3.2.5 Microstructure observation 34
3.2.6 Differential scanning calorimeter (DSC) 34
3.2.7 Dielectric properties 35
3.2.8 Microwave dielectric properties 35
Chapter 4 Results 36
4.1 Starting powders 36
4.1.1 SrCO3 and TiO2 36
4.1.2 Commercial SrTiO3 37
4.1.3 Ba-Ti-B-Si-O glass 39
4.2 Calcination and sintering behavior 43
4.2.1 Particle size distribution 43
4.2.2 Composition identification 49
4.2.3 Phase identification 50
4.2.4 Microstructure observation 57
4.2.5 Relative density 63
4.3 Dielectric properties 68
4.3.1 Dielectric properties at low frequency 68
4.3.2 Microwave dielectric properties 78
Chapter 5 Discussion 83
5.1 Starting powders 83
5.2 Calcination and sintering behavior 85
5.3 Dielectric properties 96
Chapter 6 Conclusions 103
Chapter 7 Future works 105
REFERENCES 106
-
dc.language.isoen-
dc.subject低溫共燒陶瓷zh_TW
dc.subject微波介電性質zh_TW
dc.subject鈦酸鍶zh_TW
dc.subjectmicrowave dielectric propertiesen
dc.subjectSr/Ti ratioen
dc.subjectLTCCen
dc.title低溫燒結玻璃-鈦酸鍶介電陶瓷之研究zh_TW
dc.titleSintering of glass-SrTiO3 system and its propertiesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃俊銘;勞業武;陳惠如zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword鈦酸鍶,低溫共燒陶瓷,微波介電性質,zh_TW
dc.subject.keywordSr/Ti ratio,LTCC,microwave dielectric properties,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU201902175-
dc.rights.note未授權-
dc.date.accepted2019-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2024-08-15-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
9.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved