請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78350完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁俞文(Yu-Wen Ting) | |
| dc.contributor.author | Jo-Han Chao | en |
| dc.contributor.author | 趙若涵 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:52:30Z | - |
| dc.date.available | 2022-07-31 | |
| dc.date.copyright | 2020-09-09 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 1. Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X., Lee, H.-G., Smith, M. A., Joseph, J. A., Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience 2004, 7 (5-6), 309-316. 2. Akinwumi, B., Bordun, K.-A., Anderson, H., Biological activities of stilbenoids. International Journal of Molecular Sciences 2018, 19 (3), 792. 3. Mccormack, D., Mcfadden, D., Pterostilbene and cancer: Current review. Journal of Surgical Research 2012, 173 (2), e53-e61. 4. Reuter, S., Gupta, S. C., Chaturvedi, M. M., Aggarwal, B. B., Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine 2010, 49 (11), 1603-1616. 5. Hsu, C.-L., Lin, Y.-J., Ho, C.-T., Yen, G.-C., The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3t3-l1 adipocytes and raw 264.7 macrophages. Journal of Agricultural and Food Chemistry 2013, 61 (3), 602-610. 6. Watanabe, K., Kawamori, T., Nakatsugi, S., Wakabayashi, K., Cox‐2 and inos, good targets for chemoprevention of colon cancer. BioFactors 2000, 12 (1‐4), 129-133. 7. Chiou, Y.-S., Tsai, M.-L., Wang, Y.-J., Cheng, A.-C., Lai, W.-M., Badmaev, V., Ho, C.-T., Pan, M.-H., Pterostilbene inhibits colorectal aberrant crypt foci (acf) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice. Journal of Agricultural and Food Chemistry 2010, 58 (15), 8833-8841. 8. Hasiah, A., Ghazali, A. R., Weber, J., Velu, S., Thomas, N., Inayat Hussain, S., Cytotoxic and antioxidant effects of methoxylated stilbene analogues on hepg2 hepatoma and chang liver cells: Implications for structure activity relationship. Human Experimental Toxicology 2011, 30 (2), 138-144. 9. Chakraborty, A., Gupta, N., Ghosh, K., Roy, P., In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from pterocarpus marsupium. Toxicology In Vitro 2010, 24 (4), 1215-1228. 10. Bhakkiyalakshmi, E., Shalini, D., Sekar, T. V., Rajaguru, P., Paulmurugan, R., Ramkumar, K. M., Therapeutic potential of pterostilbene against pancreatic beta‐cell apoptosis mediated through n rf2. British Journal of Pharmacology 2014, 171 (7), 1747-1757. 11. Satheesh, M. A., Pari, L., Effect of pterostilbene on lipids and lipid profiles in streptozotocin-nicotinamide induced type 2 diabetes mellitus. Journal of Applied Biomedicine (De Gruyter Open) 2008, 6 (1). 12. Muller, F. L., Lustgarten, M. S., Jang, Y., Richardson, A., Van Remmen, H., Trends in oxidative aging theories. Free Radical Biology and Medicine 2007, 43 (4), 477-503. 13. Joseph, J. A., Fisher, D. R., Cheng, V., Rimando, A. M., Shukitt-Hale, B., Cellular and behavioral effects of stilbene resveratrol analogues: Implications for reducing the deleterious effects of aging. Journal of Agricultural and Food Chemistry 2008, 56 (22), 10544-10551. 14. Peng, R. M., Lin, G. R., Ting, Y., Hu, J. Y., Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. BioFactors 2018, 44 (1), 5-15. 15. Zhang, Y., Shang, Z., Gao, C., Du, M., Xu, S., Song, H., Liu, T., Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 2014, 15 (4), 1000-1008. 16. Mignani, S., El Kazzouli, S., Bousmina, M., Majoral, J.-P., Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Reviews 2013, 65 (10), 1316-1330. 17. Lundquist, P., Artursson, P., Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Advanced Drug Delivery Reviews 2016, 106, 256-276. 18. Wang, T., Luo, Y., Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 2019, 11 (23), 11048-11063. 19. Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian Journal of Pharmaceutical Sciences 2015, 10 (2), 81-98. 20. Fricker, G., Kromp, T., Wendel, A., Blume, A., Zirkel, J., Rebmann, H., Setzer, C., Quinkert, R.-O., Martin, F., Müller-Goymann, C., Phospholipids and lipid-based formulations in oral drug delivery. Pharmaceutical Research 2010, 27 (8), 1469-1486. 21. Mcclements, D. J., Xiao, H., Excipient foods: Designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Function 2014, 5 (7), 1320-1333. 22. Singh, B., Awasthi, R., Ahmad, A., Saifi, A., Phytosome: Most significant tool for herbal drug delivery to enhance the therapeutic benefits of phytoconstituents. Journal of Drug Delivery and Therapeutics 2018, 8 (1), 98-102. 23. Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L., Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 2004, 79 (5), 727-747. 24. Lu, M., Qiu, Q., Luo, X., Liu, X., Sun, J., Wang, C., Lin, X., Deng, Y., Song, Y., Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmaceutical Sciences 2019, 14 (3), 265-274. 25. Semalty, A., Semalty, M., Rawat, B. S., Singh, D., Rawat, M., Pharmacosomes: The lipid-based new drug delivery system. Expert Opinion on Drug Delivery 2009, 6 (6), 599-612. 26. Zhang, X., Zhang, Y., Guo, S., Bai, F., Wu, T., Zhao, Y., Improved oral bioavailability of 20 (r)-25-methoxyl-dammarane-3β, 12β, 20-triol using nanoemulsion based on phospholipid complex: Design, characterization, and in vivo pharmacokinetics in rats. Drug Design, Development and Therapy 2016, 10, 3707. 27. Szuhaj, B. F., Lecithins: Sources, manufacture uses. The American Oil Chemists Society: 1989; Vol. 12. 28. Schmahl, D., Comment on the carcinogenicity of polyenephosphatidylcholine. In Research report no. 0061/80, 1980. 29. Silky, K. D., Malviya, S., Talwar, V., Katare, O., Potential and promises of phospholipid structured novel formulations for hepatoprotection. International Journal of Drug Development and Research 2012, 4 (1), 51-58. 30. Vitale, J. J., Broitman, S. A., Lipids and immune function. Cancer Research 1981, 41 (9 Part 2), 3706-3710. 31. Mourad, A. M., De Carvalho Pincinato, E., Mazzola, P. G., Sabha, M., Moriel, P., Influence of soy lecithin administration on hypercholesterolemia. Cholesterol 2009, 2010. 32. Gnananath, K., Nataraj, K. S., Rao, B. G., Phospholipid complex technique for superior bioavailability of phytoconstituents. Advanced Pharmaceutical Bulletin 2017, 7 (1), 35. 33. Hooresfand, Z., Ghanbarzadeh, S., Hamishehkar, H., Preparation and characterization of rutin-loaded nanophytosomes. Pharm Sci 2015, 21 (3), 145-151. 34. Maryana, W., Rachmawati, H., Mudhakir, D., Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Materials Today: Proceedings 2016, 3 (3), 855-866. 35. Semalty, A., Semalty, M., Singh, D., Rawat, M., Phyto-phospholipid complex of catechin in value added herbal drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2012, 73 (1-4), 377-386. 36. Zhang, K., Zhang, M., Liu, Z., Zhang, Y., Gu, L., Hu, G., Chen, X., Jia, J., Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in sd rats. Fitoterapia 2016, 113, 102-109. 37. Huang, J., Chen, P. X., Rogers, M. A., Wettig, S. D., Investigating the phospholipid effect on the bioaccessibility of rosmarinic acid-phospholipid complex through a dynamic gastrointestinal in vitro model. Pharmaceutics 2019, 11 (4), 156. 38. Ramadan, M., Phenolipids: New generation of antioxidants with higher bioavailability. Austin Journal of Nutrition Metabolism 2014, 1, 1-2. 39. Yadav, S. K., Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration. Springer: 2016. 40. Sabzichi, M., Hamishehkar, H., Ramezani, F., Sharifi, S., Tabasinezhad, M., Pirouzpanah, M., Ghanbari, P., Samadi, N., Luteolin-loaded phytosomes sensitize human breast carcinoma mda-mb 231 cells to doxorubicin by suppressing nrf2 mediated signalling. Asian Pacific Journal of Cancer Prevention 2014, 15 (13), 5311-5316. 41. Li, F., Yang, X., Yang, Y., Li, P., Yang, Z., Zhang, C., Phospholipid complex as an approach for bioavailability enhancement of echinacoside. Drug Development and Industrial Pharmacy 2015, 41 (11), 1777-1784. 42. Hou, Z., Li, Y., Huang, Y., Zhou, C., Lin, J., Wang, Y., Cui, F., Zhou, S., Jia, M., Ye, S., Phytosomes loaded with mitomycin c–soybean phosphatidylcholine complex developed for drug delivery. Molecular Pharmaceutics 2012, 10 (1), 90-101. 43. Semalty, A., Semalty, M., Singh, D., Rawat, M., Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2010, 67 (3-4), 253-260. 44. Sikarwar, M. S., Sharma, S., Jain, A. K., Parial, S., Preparation, characterization and evaluation of marsupsin–phospholipid complex. AAPS PharmSciTech 2008, 9 (1), 129-137. 45. Singh, R., Parpani, S., Narke, R., Chavan, R., Phytosome: Recent advance research for novel drug delivery system. Asian Journal of Pharmaceutical Research and Development 2014, 15-29. 46. Khan, J., Alexander, A., Saraf, S., Saraf, S., Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. Journal of Controlled Release 2013, 168 (1), 50-60. 47. Ghanbarzadeh, B., Babazadeh, A., Hamishehkar, H., Nano-phytosome as a potential food-grade delivery system. Food Bioscience 2016, 15, 126-135. 48. Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Keyvani, F., Pezeshki, A., Gholian, M. M., Phytosome and liposome: The beneficial encapsulation systems in drug delivery and food application. Applied Food Biotechnology 2015. 49. Tan, Q., Liu, S., Chen, X., Wu, M., Wang, H., Yin, H., He, D., Xiong, H., Zhang, J., Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech 2012, 13 (2), 534-547. 50. Qiu, Q., Lu, M., Li, C., Luo, X., Liu, X., Hu, L., Liu, M., Zheng, H., Zhang, H., Liu, M., Novel self-assembled ibrutinib-phospholipid complex for potently peroral delivery of poorly soluble drugs with ph-dependent solubility. AAPS PharmSciTech 2018, 19 (8), 3571-3583. 51. Semalty, A., Semalty, M., Singh, D., Rawat, M., Development and characterization of aspirin-phospholipid complex for improved drug delivery. International Journal of Pharmaceutical Sciences and Nanotechnology 2010, 3 (2), 940-947. 52. Guo, B., Liu, H., Li, Y., Zhao, J., Yang, D., Wang, X., Zhang, T., Application of phospholipid complex technique to improve the dissolution and pharmacokinetic of probucol by solvent-evaporation and co-grinding methods. International Journal of Pharmaceutics 2014, 474 (1-2), 50-56. 53. Singh, D., Sm Rawat, M., Semalty, A., Semalty, M., Quercetin-phospholipid complex: An amorphous pharmaceutical system in herbal drug delivery. Current Drug Discovery Technologies 2012, 9 (1), 17-24. 54. Hubatsch, I., Ragnarsson, E. G., Artursson, P., Determination of drug permeability and prediction of drug absorption in caco-2 monolayers. Nature Protocols 2007, 2 (9), 2111. 55. Liu, Q., Chen, J., Qin, Y., Jiang, B., Zhang, T., Encapsulation of pterostilbene in nanoemulsions: Influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and caco-2 cell monolayer permeability. Food Function 2019, 10 (10), 6604-6614. 56. Sun, N., Jin, Z., Li, D., Yin, H., Lin, S., An exploration of the calcium-binding mode of egg white peptide, asp-his-thr-lys-glu, and in vitro calcium absorption studies of peptide–calcium complex. Journal of Agricultural and Food Chemistry 2017, 65 (44), 9782-9789. 57. Liu, B. Identification of oxidative products of pterostilbene and 3'-hydroxypterostilbene in vitro and evaluation of anti-inflammatory and anti-cancer cell proliferative activity. Rutgers University-Graduate School-New Brunswick, 2014. 58. Liu, Y., Huang, P., Hou, X., Yan, F., Jiang, Z., Shi, J., Xie, X., Shen, J., Fan, Q., Wang, Z., Hybrid curcumin–phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. International Journal of Nanomedicine 2019, 14, 3311. 59. Singh, D., Singh Maniyari Rawat, M., Semalty, A., Semalty, M., Gallic acid-phospholipid complex: Drug incorporation and physicochemical characterization. Letters in Drug Design Discovery 2011, 8 (3), 284-291. 60. Singh, D., Rawat, M., Semalty, A., Semalty, M., Emodin–phospholipid complex. Journal of Thermal Analysis and Calorimetry 2012, 108 (1), 289-298. 61. Yang, X., Jiang, Q., Du, P., Zhao, J., Zhang, T., Preparation and characterization of solidified oleanolic acid–phospholipid complex aiming to improve the dissolution of oleanolic acid. Asian Journal of Pharmaceutical Sciences 2016, 11 (2), 241-247. 62. Singh, D., Rawat, M., Semalty, A., Semalty, M., Chrysophanol–phospholipid complex. Journal of Thermal Analysis and Calorimetry 2013, 111 (3), 2069-2077. 63. Fan, Z., Liu, G., Li, Y., Ma, J., Lin, J., Guo, F., Hou, Z., Xie, L., Self-assembly of the active lactone form of a camptothecin–phospholipid complex for sustained nuclear drug delivery. RSC Advances 2016, 6 (86), 82949-82960. 64. Cheng, W., Li, X., Zhang, C., Chen, W., Yuan, H., Xu, S., Preparation and in vivo-in vitro evaluation of polydatin-phospholipid complex with improved dissolution and bioavailability. International Journal of Drug Development and Research 2017, 9, 39-43. 65. Kitagawa, Y., Matsuda, T., Iijima, S., Animal cell technology: Basic applied aspects. Springer: 2002. 66. Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., Shimizu, M., Transepithelial transport of the bioactive tripeptide, val-pro-pro, in human intestinal caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry 2002, 66 (2), 378-384. 67. Lea, T., Caco-2 cell line. In The impact of food bioactives on health, Springer, Cham: 2015; pp 103-111. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78350 | - |
| dc.description.abstract | 紫檀芪具有多種藥理性質,包括抗氧化、抗衰老、抗癌與保護心血管等功效,然而紫檀芪的低水溶性與小腸中的低吸收效果,限制其在人體中的實際效用,因此需開發合適的紫檀芪遞送系統,以增強其水溶性、穩定性,從而提高口服生物利用率。磷脂複合物為一種以磷脂作為載體的藥物遞送系統,將活性化合物或植物提取物透過磷脂包覆,可以增強疏水性化合物的口服生物利用率。故本研究之目的是以磷脂醯膽鹼包覆紫檀芪,希望有效提升口服生物利用率;而磷脂複合物之評估可透過高速離心技術研究紫檀芪的包覆效率,也透過傅里葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)、X光繞射儀(X-ray diffractometer, XRD)、差示掃描量熱儀(Differential scanning calorimetry, DSC)與掃描式電子顯微鏡(Scanning Electron Microscope, SEM)確認磷脂複合物結構之形成,而界面電位分析儀用以測定磷脂複合物之囊泡顆粒尺寸、多分散指數與界面電位,最後,Caco-2細胞滲透性試驗可模擬紫檀芪磷脂複合物之腸吸收效果。根據實驗結果,紫檀芪與磷脂醯膽鹼的比例為1:3時,紫檀芪磷脂複合物之包覆效率為92%,FTIR證實了紫檀芪與磷脂醯膽鹼之間有氫鍵之分子間作用力,因此增強了紫檀芪的穩定性,紫檀芪磷脂複合物於DSC熱分析發現紫檀芪之吸熱峰有消失的現象,以XRD與SEM分析紫檀芪磷脂複合物,皆顯示紫檀芪之結晶性有消失的現象,因此上述實驗均證實磷脂有成功包覆紫檀芪,另外,細胞毒性試驗顯示紫檀芪磷脂複合物與紫檀芪相比,有較強之生物活性,對Caco-2結腸癌細胞有較佳之抑制效果,以Caco-2滲透性試驗模擬小腸吸收之體外模型,證實紫檀芪磷脂複合物有較佳之腸通透性,可改善紫檀芪於人體小腸之吸收效果,提升其生物利用率,因此本研究結果可望擴展紫檀芪於健康食品與功能性食品中的適用性,亦可以作為具有類似化學性質的化合物欲開發口服配方的參考。 | zh_TW |
| dc.description.abstract | Pterostilbene possess several protective effects including anti-oxidant, anti-aging, anticancer, cardiovascular protection. However, the low aqueous solubility and poor intestinal absorption of pterostilbene limit its practical use in the biological system. Therefore, it is desirable to develop a suitable delivery system for pterostilbene to enhance its aqueous solubility, stability, bioaccessibility, and, thus, the oral bioavailability. In this sense, phospholipid complex, a lipid compatible molecular complex, could incorporate active compound or extract into its phospholipids backbone could be a suitable carrier system to enhance oral bioavailability of hydrophobic compound like pterostilbene. Here in this work, we would like to encapsulate pterostilbene into an optimized phospholipid complex system. Phospholipid complex was prepared by refluxing followed by solvent evaporation technique. Evaluation entrapment efficiency was evaluated by ultracentrifugation techniques. The formation of the phospholipid complex was assessed by Fourier transform-infrared (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). Vesicle size, polydispersity index, and zeta potential were determined by dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Finally, the intestinal absorption of pterostilbene phospholipid complex was simulated using the Caco-2 cell permeability assay. According to the experimental results, the 1:3 ratio of pterostilbene to phosphatidylcholine would be the optimum formulation giving 92% encapsulation efficiency. FTIR spectra showed some peaks that validated the presence of chemical interactions between pterostilbene and phosphatidylcholine and, thus, enhanced the stability of pterostilbene. The formation of the pterostilbene phospholipid complex was also determined by XRD, DSC and SEM analysis. Moreover, the anti-cancer effects on human colon cancer cells demonstrated that the pterostilbene phospholipid complex enhanced the cytotoxic activity of the pterostilbene alone. The positive effect of prepared phospholipid complex system on the bioavailability of pterostilbene was studied and confirmed by Caco-2 monolayer models. Thus, the result from this work could not only extend the applicability of pterostilbene in the health and functional foods, but also serve as reference for development of oral formulation for compound with similar chemical properties. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:52:30Z (GMT). No. of bitstreams: 1 U0001-2807202000165700.pdf: 4312620 bytes, checksum: 7a7fd27089c218d289e6c354857f03bf (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 II 摘要 IV Abstract V 目錄 VII 圖目錄 X 表目錄 XI 第一章、前言 1 第二章、文獻回顧 2 2.1 紫檀芪 2 2.1.1紫檀芪簡介 2 2.1.2 紫檀芪之生理活性 4 2.1.3 紫檀芪於人體吸收之難處 6 2.2 口服給藥 7 2.3 磷脂類口服藥物遞送系統 9 2.4 生物利用率 11 2.5 磷脂複合物 12 2.5.1 磷脂複合物之簡介 12 2.5.2 磷脂複合物形成之條件 13 2.5.3 活性成分與磷脂之間的相互作用 17 2.5.4 磷脂複合物之製備方式 18 2.5.5 磷脂複合物於食品領域之應用 20 第三章、研究目的與實驗架構 21 3.1 研究目的 21 3.2 實驗架構 21 第四章、材料與方法 22 4.1 實驗材料 22 4.1.1 藥品試劑 22 4.1.2 儀器設備 23 4.2 實驗方法 25 4.2.1 紫檀芪磷脂複合物配方 25 4.2.2 傅里葉轉換紅外光譜 25 4.2.3 示差掃描熱析法 25 4.2.4 X光繞射分析 26 4.2.5 掃描式電子顯微鏡 26 4.2.6 包覆效率 26 4.2.7 粒徑、多分散性指數與界面電位分析 26 4.2.8 細胞實驗 27 第五章、結果與討論 32 5.1 包覆效率 32 5.2 傅里葉轉換紅外光譜分析 37 5.3 表面型態 39 5.4 XRD晶型結構分析 41 5.5 示差掃描熱析法 43 5.6 粒徑、多分散性指數與界面電位 45 5.7 Caco-2細胞毒性試驗 47 5.8 Caco-2細胞滲透性試驗 49 第六章、結論 54 第七章、未來展望 55 第八章、參考文獻 56 附錄一 i 附錄二 ii | |
| dc.language.iso | zh-TW | |
| dc.subject | 腸吸收 | zh_TW |
| dc.subject | 磷脂複合物 | zh_TW |
| dc.subject | 紫檀芪 | zh_TW |
| dc.subject | 磷脂醯膽鹼 | zh_TW |
| dc.subject | 生物利用率 | zh_TW |
| dc.subject | bioavailability | en |
| dc.subject | pterostilbene | en |
| dc.subject | phospholipid complex | en |
| dc.subject | phosphatidylcholine | en |
| dc.subject | intestinal absorption | en |
| dc.title | 以磷脂包覆紫檀芪提升穩定性及生物利用率 | zh_TW |
| dc.title | Phospholipid Encapsulation Enhanced the Stability and Bioavailability of Pterostilbene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞碧(Jui-Pi Wu),呂廷璋(Ting-Chang Lu),許富鈞(Fu-Chun Hsu),沈賜川(Ssu-Chuan Shen) | |
| dc.subject.keyword | 磷脂複合物,紫檀芪,磷脂醯膽鹼,生物利用率,腸吸收, | zh_TW |
| dc.subject.keyword | phospholipid complex,pterostilbene,phosphatidylcholine,bioavailability,intestinal absorption, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202001938 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202000165700.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
