Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78331
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁俞文(Yu-Wen Ting)
dc.contributor.authorChun-Pei Yehen
dc.contributor.author葉郡沛zh_TW
dc.date.accessioned2021-07-11T14:51:35Z-
dc.date.available2025-08-18
dc.date.copyright2020-09-04
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation1. Li, S.; Pan, M.-H.; Lo, C.-Y.; Tan, D.; Wang, Y.; Shahidi, F.; Ho, C.-T., Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods 2009, 1 (1), 2-12.
2. Li, S.; Wang, H.; Guo, L.; Zhao, H.; Ho, C.-T., Chemistry and bioactivity of nobiletin and its metabolites. Journal of Functional Foods 2014, 6, 2-10.
3. Li, S.; Sang, S.; Pan, M.-H.; Lai, C.-S.; Lo, C.-Y.; Yang, C. S.; Ho, C.-T., Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorganic Medicinal Chemistry Letters 2007, 17 (18), 5177-5181.
4. Lai, C.S.; Li, S.; Chai, C.-Y.; Lo, C.-Y.; Ho, C.-T.; Wang, Y.-J.; Pan, M.-H., Inhibitory effect of citrus 5-hydroxy-3, 6, 7, 8, 3′, 4′-hexamethoxyflavone on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice. Carcinogenesis 2007, 28 (12), 2581-2588.
5. Pan, M.H.; Lai, Y.-S.; Lai, C.-S.; Wang, Y.-J.; Li, S.; Lo, C.-Y.; Dushenkov, S.; Ho, C.-T., 5-hydroxy-3, 6, 7, 8, 3 ‘, 4 ‘-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells. Journal of Agricultural and Food Chemistry 2007, 55 (13), 5081-5091.
6. Li, R. W.; Theriault, A. G.; Au, K.; Douglas, T. D.; Casaschi, A.; Kurowska, E. M.; Mukherjee, R., Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters. Life Sciences 2006, 79 (4), 365-373.
7. Ley, K., Physiology of Inflammation. Springer: 2013.
8. Robbins, S.; Kumar, V.; Cotran, R., Pathologic basis of disease. Chapter 2: acute and chronic inflammation 8th edition ed. Philadelphia: Elsevier Saunders: 2010.
9. Kundu, J. K.; Surh, Y.-J., Inflammation: gearing the journey to cancer. Mutation Research/Reviews in Mutation Research 2008, 659 (1-2), 15-30.
10. Murakami, A.; Nakamura, Y.; Ohto, Y.; Yano, M.; Koshiba, T.; Koshimizu, K.; Tokuda, H.; Nishino, H.; Ohigashi, H., Suppressive effects of citrus fruits on free radical generation and nobiletin, an anti-inflammatory polymethoxyflavonoid. BioFactors 2000, 12 (1-4), 187-192.
11. Murakami, A.; Shigemori, T.; Ohigashi, H., Zingiberaceous and citrus constituents, 1′-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264. 7 murine macrophages through different modes of action. The Journal of Nutrition 2005, 135 (12), 2987S-2992S.
12. Ishiwa, J.; Sato, T.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A., A citrus flavonoid, nobiletin, suppresses production and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. The Journal of Rheumatology 2000, 27 (1), 20-25.
13. Lin, N.; Sato, T.; Takayama, Y.; Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A., Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochemical Pharmacology 2003, 65 (12), 2065-2071.
14. Manthey, J. A.; Grohmann, K.; Montanari, A.; Ash, K.; Manthey, C. L., Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-α expression by human monocytes. Journal of Natural Products 1999, 62 (3), 441-444.
15. Whitman, S. C.; Kurowska, E. M.; Manthey, J. A.; Daugherty, A., Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages. Atherosclerosis 2005, 178 (1), 25-32.
16. Kurowska, E. M.; Manthey, J. A., Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. Journal of Agricultural and Food Chemistry 2004, 52 (10), 2879-2886.
17. Saito, T.; Abe, D.; Sekiya, K., Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochemical And Biophysical Research Communications 2007, 357 (2), 371-376.
18. Ohshima, H.; Tatemichi, M.; Sawa, T., Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics 2003, 417 (1), 3-11.
19. Tang, M.; Ogawa, K.; Asamoto, M.; Hokaiwado, N.; Seeni, A.; Suzuki, S.; Takahashi, S.; Tanaka, T.; Ichikawa, K.; Shirai, T., Protective effects of citrus nobiletin and auraptene in transgenic rats developing adenocarcinoma of the prostate (TRAP) and human prostate carcinoma cells. Cancer Science 2007, 98 (4), 471-477.
20. Suzuki, R.; Kohno, H.; Murakami, A.; Koshimizu, K.; Ohigashi, H.; Yano, M.; Tokuda, H.; Nishino, H.; Tanaka, T., Citrus nobiletin inhibits azoxymethane‐induced large bowel carcinogenesis in rats. BioFactors 2004, 21 (1‐4), 111-114.
21. Van Slambrouck, S.; Parmar, V. S.; Sharma, S. K.; Bondt, B. D.; Foré, F.; Coopman, P.; Vanhoecke, B. W.; Boterberg, T.; Depypere, H. T.; Leclercq, G., Tangeretin inhibits extracellular‐signal‐regulated kinase (ERK) phosphorylation. FEBS Letters 2005, 579 (7), 1665-1669.
22. Li, S.; Wang, Y.; Dushenkov, S.; Ho, C.-T., Bioavailability of polymethoxyflavones. ACS Publications: 2008.
23. Ting, Y.; Zhao, Q.; Xia, C.; Huang, Q., Using in vitro and in vivo models to evaluate the oral bioavailability of nutraceuticals. Journal of Agricultural and Food Chemistry 2015, 63 (5), 1332-1338.
24. van de Waterbeemd, H., Physico-chemical approaches to drug absorption. Methods And Principles In Medicinal Chemistry 2003, 18, 3-20.
25. Kansy, M.; Senner, F.; Gubernator, K., Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 1998, 41 (7), 1007-1010.
26. Chabane, M. N.; Ahmad, A. A.; Peluso, J.; Muller, C. D.; Ubeaud‐Séquier, G., Quercetin and naringenin transport across human intestinal Caco‐2 cells. Journal of Pharmacy and Pharmacology 2009, 61 (11), 1473-1483.
27. Gan, L.-S.; Hsyu, P.-H.; Pritchard, J. F.; Thakker, D., Mechanism of intestinal absorption of ranitidine and ondansetron: transport across Caco-2 cell monolayers. Pharmaceutical Research 1993, 10 (12), 1722-1725.
28. Tewfik, S.; Tewfik, I., Nutraceuticals, functional foods and botanical dietary supplements; promote wellbeing and underpin public health. World Review of Science, Technology and Sustainable Development 2008, 5 (2), 104-123.
29. Go, V. L. W.; Harris, D. M.; Srihari, P., Global overview of the role of nutraceuticals in cancer. In Nutraceuticals and Cancer, Springer: 2012; pp 1-10.
30. Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K., Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release 2017, 252, 28-49.
31. Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 2003, 17 (1), 25-39.
32. Schubert, H.; Engel, R., Product and formulation engineering of emulsions. Chemical Engineering Research and Design 2004, 82 (9), 1137-1143.
33. Schubert, H.; Ax, K.; Behrend, O., Product engineering of dispersed systems. Trends in Food Science Technology 2003, 14 (1-2), 9-16.
34. Cho, S.-C.; Choi, W.-Y.; Oh, S.-H.; Lee, C.-G.; Seo, Y.-C.; Kim, J.-S.; Song, C.-H.; Kim, G.-V.; Lee, S.-Y.; Kang, D.-H., Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. BioMed Research International 2012, 2012.
35. Gogate, P. R.; Kabadi, A. M., A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal 2009, 44 (1), 60-72.
36. McClements, D. J., Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 2011, 7 (6), 2297-2316.
37. Anton, N.; Vandamme, T. F., The universality of low-energy nano-emulsification. International Journal of Pharmaceutics 2009, 377 (1-2), 142-147.
38. Anton, N.; Gayet, P.; Benoit, J.-P.; Saulnier, P., Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics 2007, 344 (1-2), 44-52.
39. Shinoda, K.; Arai, H., The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. The Journal of Physical Chemistry 1964, 68 (12), 3485-3490.
40. Fernandez, P.; André, V.; Rieger, J.; Kühnle, A., Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 251 (1-3), 53-58.
41. Hu, Y.-T.; Ting, Y.; Hu, J.-Y.; Hsieh, S.-C., Techniques and methods to study functional characteristics of emulsion systems. Journal of Food And Drug Analysis 2017, 25 (1), 16-26.
42. Neethirajan, S.; Jayas, D. S., Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology 2011, 4 (1), 39-47.
43. Silva, H. D.; Cerqueira, M. Â.; Vicente, A. A., Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology 2012, 5 (3), 854-867.
44. Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G., Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 2014, 39, 301-318.
45. Qi, M.; Hettiarachchy, N.; Kalapathy, U., Solubility and emulsifying properties of soy protein isolates modified by pancreatin. Journal of Food Science 1997, 62 (6), 1110-1115.
46. Saio, K.; Kamiya, M.; Watanabe, T., Food processing characteristics of soybean 11s and 7s proteins: Part i. Effect of difference of protein components among soybean varieties on formation of tofu-gel. Agricultural and Biological Chemistry 1969, 33 (9), 1301-1308.
47. Rivas, H.; Sherman, P., Soy and meat proteins as emulsion stabilizers. 4. The stability and interfacial rheology of O/W emulsions stabilised by soy and meat protein fractions. Colloids and Surfaces 1984, 11 (1-2), 155-171.
48. Were, L.; Hettiarachchy, N.; Coleman, M., Properties of cysteine‐added soy protein‐wheat gluten films. Journal of Food Science 1999, 64 (3), 514-518.
49. Vallabha, V. S.; Tiku, P. K., Antihypertensive peptides derived from soy protein by fermentation. International Journal of Peptide Research and Therapeutics 2014, 20 (2), 161-168.
50. Salas, C.; Rojas, O. J.; Lucia, L. A.; Hubbe, M. A.; Genzer, J., On the surface interactions of proteins with lignin. ACS Applied Materials Interfaces 2013, 5 (1), 199-206.
51. Lee, H.; Yildiz, G.; Dos Santos, L.; Jiang, S.; Andrade, J.; Engeseth, N. J.; Feng, H., Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocolloids 2016, 55, 200-209.
52. Fornaguera, C.; Dols-Perez, A.; Caldero, G.; Garcia-Celma, M.; Camarasa, J.; Solans, C., PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. Journal of Controlled Release 2015, 211, 134-143.
53. Surassmo, S.; Min, S.-G.; Bejrapha, P.; Choi, M.-J., Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International 2010, 43 (1), 8-17.
54. Sari, T.; Mann, B.; Kumar, R.; Singh, R.; Sharma, R.; Bhardwaj, M.; Athira, S., Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 2015, 43, 540-546.
55. Chen, J.; Zheng, J.; Decker, E. A.; McClements, D. J.; Xiao, H., Improving nutraceutical bioavailability using mixed colloidal delivery systems: lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles. Rsc Advances 2015, 5 (90), 73892-73900.
56. Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T., Encapsulation of pterostilbene in nanoemulsions: influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and Caco-2 cell monolayer permeability. Food Function 2019, 10 (10), 6604-6614.
57. Yu, H.; Shi, K.; Liu, D.; Huang, Q., Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chemistry 2012, 131 (1), 48-54.
58. Dahan, A.; Hoffman, A., Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Journal of Controlled Release 2008, 129 (1), 1-10.
59. Lea, T., Caco-2 Cell Line. In The Impact of Food Bioactives on Health: in vitro and ex vivo models, Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H., Eds. Springer International Publishing: Cham, 2015; pp 103-111.
60. Wang, R. L.; Li, S.; Ho, C.-T., Absorption of polymethoxyflavones and their derivatives. Journal of Food Bioactives 2018, 2, 82–90-82–90.
61. Hubatsch, I.; Ragnarsson, E. G. E.; Artursson, P., Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols 2007, 2 (9), 2111-2119.
62. Satake, M.; Enjoh, M.; Nakamura, Y.; Takano, T.; Kawamura, Y.; Arai, S.; Shimizu, M., Transepithelial Transport of the Bioactive Tripeptide, Val-Pro-Pro, in Human Intestinal Caco-2 Cell Monolayers. Bioscience, Biotechnology, and Biochemistry 2002, 66 (2), 378-384.
63. Liu, W.; Pan, H.; Zhang, C.; Zhao, L.; Zhao, R.; Zhu, Y.; Pan, W., Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. International Journal of Molecular Sciences 2016, 17 (7), 1171.
64. Srinivasan, B.; Kolli, A. R.; Esch, M. B.; Abaci, H. E.; Shuler, M. L.; Hickman, J. J., TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation 2015, 20 (2), 107-126.
65. Wang, Z.; Li, S.; Ferguson, S.; Goodnow, R.; Ho, C. T., Validated reversed phase LC method for quantitative analysis of polymethoxyflavones in citrus peel extracts. Journal of Separation Science 2008, 31 (1), 30-37.
66. Xu, J.; Mukherjee, D.; Chang, S. K., Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chemistry 2018, 240, 1005-1013.
67. Li, Y.; Xiao, H.; McClements, D. J., Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food Biophysics 2012, 7 (4), 341-353.
68. McClements, D. J.; Xiao, H., Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Function 2012, 3 (3), 202-220.
69. Ting, Y.; Xia, Q.; Li, S.; Ho, C.-T.; Huang, Q., Design of high-loading and high-stability viscoelastic emulsions for polymethoxyflavones. Food Research International 2013, 54 (1), 633-640.
70. Masalova, I.; Foudazi, R.; Malkin, A. Y., The rheology of highly concentrated emulsions stabilized with different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 375 (1-3), 76-86.
71. Mason, T., New fundamental concepts in emulsion rheology. Current Opinion in Colloid Interface Science 1999, 4 (3), 231-238.
72. Pal, R., Effect of droplet size on the rheology of emulsions. AIChE Journal 1996, 42 (11), 3181-3190.
73. Van Aken, G. A.; Vingerhoeds, M. H.; De Wijk, R. A., Textural perception of liquid emulsions: Role of oil content, oil viscosity and emulsion viscosity. Food Hydrocolloids 2011, 25 (4), 789-796.
74. Shah, P.; Bhalodia, D.; Shelat, P., Nanoemulsion: a pharmaceutical review. Systematic Reviews in Pharmacy 2010, 1 (1).
75. Qian, C.; McClements, D. J., Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids 2011, 25 (5), 1000-1008.
76. Lee, L.; Norton, I. T., Comparing droplet breakup for a high-pressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions. Journal of Food Engineering 2013, 114 (2), 158-163.
77. Bai, L.; Huan, S.; Gu, J.; McClements, D. J., Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids 2016, 61, 703-711.
78. Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C., Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 2004, 108, 303-318.
79. Bouyer, E.; Mekhloufi, G.; Rosilio, V.; Grossiord, J.-L.; Agnely, F., Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics 2012, 436 (1-2), 359-378.
80. Hunter, R. J., Foundations of colloid science. Oxford university press: 2001.
81. Adjonu, R.; Doran, G.; Torley, P.; Agboola, S., Formation of whey protein isolate hydrolysate stabilised nanoemulsion. Food Hydrocolloids 2014, 41, 169-177.
82. Fernández-Ávila, C.; Escriu, R.; Trujillo, A., Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International 2015, 75, 357-366.
83. Parlak, M.; Östürk, Ö.; Temel, Ü. N.; Yapici, K. In Heat transfer performance of water based nanofluids containing various types of metal oxide nanoparticles in an air-cooled microchannel heat exchanger, 2017 16th IEEE Intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm), IEEE: 2017; pp 1-5.
84. Chen, H.; An, Y.; Yan, X.; McClements, D. J.; Li, B.; Li, Y., Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): Influence of hydroxypropyl methylcellulose and thermal processing. Food Hydrocolloids 2015, 51, 395-404.
85. Yang, Y.; Zhao, C.; Chen, J.; Tian, G.; McClements, D. J.; Xiao, H.; Zheng, J., Encapsulation of polymethoxyflavones in citrus oil emulsion-based delivery systems. Journal of Agricultural and Food Chemistry 2017, 65 (8), 1732-1739.
86. Wan, J.; Li, D.; Song, R.; Shah, B. R.; Li, B.; Li, Y., Enhancement of physical stability and bioaccessibility of tangeretin by soy protein isolate addition. Food Chemistry 2017, 221, 760-770.
87. Raghavan, S.; Trividic, A.; Davis, A.; Hadgraft, J., Crystallization of hydrocortisone acetate: influence of polymers. International Journal of Pharmaceutics 2001, 212 (2), 213-221.
88. Lee, S. J.; Choi, S. J.; Li, Y.; Decker, E. A.; McClements, D. J., Protein-stabilized nanoemulsions and emulsions: comparison of physicochemical stability, lipid oxidation, and lipase digestibility. Journal of Agricultural And Food Chemistry 2011, 59 (1), 415-427.
89. Teo, A.; Goh, K. K.; Wen, J.; Oey, I.; Ko, S.; Kwak, H.-S.; Lee, S. J., Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chemistry 2016, 197, 297-306.
90. Harnsilawat, T.; Pongsawatmanit, R.; McClements, D. J., Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids 2006, 20 (5), 577-585.
91. Ting, Y.; Jiang, Y.; Lan, Y.; Xia, C.; Lin, Z.; Rogers, M. A.; Huang, Q., Viscoelastic emulsion improved the bioaccessibility and oral bioavailability of crystalline compound: A mechanistic study using in vitro and in vivo models. Molecular Pharmaceutics 2015, 12 (7), 2229-2236.
92. Sadeghpour, A.; Rappolt, M.; Misra, S.; Kulkarni, C. V., Bile Salts Caught in the Act: From Emulsification to Nanostructural Reorganization of Lipid Self-Assemblies. Langmuir 2018, 34 (45), 13626-13637.
93. McClements, D. J.; Li, F.; Xiao, H., The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annual Review of Food Science and Technology 2015, 6 (1), 299-327.
94. Porter, C. J. H.; Trevaskis, N. L.; Charman, W. N., Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery 2007, 6 (3), 231-248.
95. Matsumoto, H.; Erickson, R. H.; Gum, J. R.; Yoshioka, M.; Gum, E.; Kim, Y. S., Biosynthesis of alkaline phosphatase during differentiation of the human colon cancer cell line Caco-2. Gastroenterology 1990, 98 (5), 1199-1207.
96. Amidon, G. L.; Lee, P. I.; Topp, E. M., Transport Processes In Pharmaceutical Systems. CRC Press: 1999.
97. Anderson, R. C.; Cookson, A. L.; McNabb, W. C.; Kelly, W. J.; Roy, N. C., Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiology Letters 2010, 309 (2), 184-192.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78331-
dc.description.abstract根據數據統計顯示全球柑橘類水果的產量極高,亦會產生大量的副產物如柑橘皮。經文獻證明柑橘皮含有大量的多甲氧基黃酮(polymethoxyflavones , PMFs)且具有多種有效的生理活性如可以抗發炎、抗粥狀動脈硬化、抗惡性腫瘤等。然而多甲氧基黃酮本身具有兩個以上的疏水性甲氧基,與其他高疏水性化合物一般,有著高熔點、低溶解度及低生物可利用率之缺點,故食品工業中欲使用多甲氧基黃酮作為營養保健品存在很大的挑戰。奈米乳液是一種以油相、水相及乳化劑所組成的口服藥物遞送系統,其獨特的物化特性及功能性,可提高疏水性活性物質的溶解度及生物可利用率。故本研究目的即利用中鏈脂肪酸為油相,大豆分離蛋白為乳化劑製備穩定性佳的奈米乳液並包覆PMFs,以提升生物可利用率及其穩定性。本實驗先利用高速均質機25000 rpm攪打兩分鐘使不互溶的兩相形成均一的粗乳液,再以高壓均質機750 bar的高能量製備奈米乳液,並依據乳液粒徑大小、黏度特性及包覆效率挑選出最適合的配方及加工條件,隨後將其進行環境壓力測試,結果發現經過75oC加熱30分鐘後其粒徑大小依然小於500 nm且無凝乳的現象發生,此結果說明以巴氏殺菌處理後不會影響其穩定性;此外,經過28天長期儲藏試驗後,包覆效率依然維持在90% 以上。後續以脂解實驗可得知PMFs奈米乳液於胃腸道消化後所釋放的生物可接收度為42.6% 相對於PMFs中鏈脂肪酸懸浮液的17.9% 而言有顯著性的差異(p < 0.05),結果說明PMFs經奈米乳液包覆後可提升在小腸腔中溶解度。消化後的PMFs混合膠束利用Caco-2單層膜模型進行體外模擬小腸吸收試驗,結果證實具有更優的腸滲透性,整體而言,PMFs以混合膠束的形式相較於水溶液而言可更有效率穿透腸上皮細胞進入循環系統。綜合上述結果,此配方製備的奈米乳液具有優良的穩定性及包覆效率,可改善PMFs難以被人體消化吸收的特性。本實驗結果期望能提升多甲氧基黃酮於營養保健食品的適用性。zh_TW
dc.description.abstractPolymethoxyflavones (PMFs), found almost exclusively in citrus fruit, have been documented with strong biological efficacies, such as chronic inflammation, tumor development, atherosclerosis. PMFs is a group of hydrophobic phytochemicals with low water-solubility and, thus, poor bioavailability when consume orally.These problems cause limitation of its practical application in the food systems.To overcome the poor oral bioavailability, nanoemulsion system is commonly utilized to enhance the aqueous solubility, stability, and bioaccessibility of PMFs. Instead of synthetic emulsifier, soy protein isolate was used as the surface active agent for the production of nanoemulsion system. To produce the nanoemulsion, various ratios of MCT, soy protein isolate and water was first mixed with high speed homogenizer at 25000 rpm in 2 minutes. Later, nanoemulsion was generated through passing the coarse emulsion from high speed homogenization to high pressure homogenization at 750 bar. To find the optimum concentration in the nanoemulsion system, every ratio of material was prepared for nanoemulsion and determined based on the change in particle size, apparent viscosity and encapsulation efficiency. After environmental stress test and long-term storage test, the datas showed that soy protein-based nanoemulsion remained high satbility and encapsulation efficiency. The oral bioavailability of PMFs was also found significantly enhanced thorugh soy protein-based nanoemulsin system as evaluated by in vitro lipolysis and Caco-2 monolayer models. The result from this work demonstrated a successful incorporation of PMFs to a nanoemulsion, in which outstanding stability and oral bioavailability was made possible.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:51:35Z (GMT). No. of bitstreams: 1
U0001-0308202021241900.pdf: 4034397 bytes, checksum: 8e063e35787f4464c818b79355049998 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 III
目錄 VI
圖目錄 IX
表目錄 XI
第一章、 前言 1
第二章、 文獻回顧 2
2.1多甲氧基黃酮 2
2.1.1多甲氧基黃酮介紹 (Polymethoxyflavones, PMFs) 2
2.1.2多甲氧基黃酮之生理活性 4
2.2生物利用率 7
2.2.1生物利用率介紹 7
2.2.2 多甲氧基黃酮之生物可利用率 9
2.3 藥物傳遞系統 11
2.3.1 藥物遞送系統介紹 11
2.3.2 口服遞送系統 11
2.4奈米乳液 13
2.4.1 乳液系統 13
2.4.2乳化劑 13
2.4.3奈米乳液製備方法 15
2.4.4乳液安定性 18
2.4.5奈米乳液在食品中的應用 20
2.5黃豆分離蛋白 21
2.5.1黃豆蛋白簡介 21
2.5.2黃豆蛋白於食品產業的應用 22
第三章、 研究目的與實驗架構 24
3.1研究目的 24
3.2實驗架構 24
第四章、 材料與方法 25
4.1實驗材料 25
4.1.1藥品試劑 25
4.1.2儀器設備 27
4.2實驗方法 28
4.2.1大豆分離蛋白水溶液製備 28
4.2.2乳液配方挑選 28
4.2.3奈米乳液製備 29
4.2.4乳液黏度分析 29
4.2.5乳液粒徑分析 30
4.2.6乳液介電電位分析 30
4.2.7奈米乳液之包覆效率 31
4.2.8體外消化模型 31
4.2.9 Caco-2 細胞實驗 34
4.2.10 HPLC分析多甲氧基黃酮 40
4.2.11奈米乳液長期儲藏性試驗 40
4.2.12環境壓力試驗 40
4.2.13統計分析與圖表繪製 41
第五章、 結果與討論 42
5.1奈米乳液配方選擇 42
5.1.1 利用三相圖挑選粗乳液配方 42
5.1.2 油相水相比例挑選 45
5.1.3 高壓均質次數對乳液粒徑的影響 48
5.1.4以包覆效率對奈米乳液配方之挑選 50
5.2奈米乳液之穩定性試驗 52
5.2.1長期儲存試驗 52
5.2.2環境壓力試驗 56
5.3體外模擬消化試驗 58
5.3.1脂質遞送系統之消化效率 58
5.3.2消化後多甲氧基黃酮於小腸腔中的溶解量-bioaccessibility 59
5.4體外模擬腸穿透試驗 62
5.4.1多甲氧基黃酮奈米乳液消化液對Caco-2細胞存活率的影響 62
5.4.2細胞模型培養 64
5.4.3多甲氧基黃酮混合膠束的腸穿透效率 67
第六章、 結論 69
第七章、 未來展望 70
第八章、 參考文獻 71
附錄一 Graphical abstract
附錄二 小論文
dc.language.isozh-TW
dc.subject奈米乳液zh_TW
dc.subject多甲氧基黃酮zh_TW
dc.subject脂肪分解zh_TW
dc.subject生物可利用率zh_TW
dc.subject黃豆分離蛋白zh_TW
dc.subjectlipolysisen
dc.subjectnanoemulsionen
dc.subjectsoy protein isolateen
dc.subjectpolymethoxyflavonesen
dc.subjectbioavailabilityen
dc.title以奈米乳液包埋多甲氧基黃酮提高其儲存安定性及生物利用率zh_TW
dc.titleNanoemulsion encapsulation enhances the storage stability and oral bioavailabilty of polymethoxyflavoneen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞碧(Swi-Bea Wu),沈賜川(Szu-Chuan Shen),林哲安(Jer-An Lin),張文昌(Wen-Chang Chang)
dc.subject.keyword多甲氧基黃酮,奈米乳液,黃豆分離蛋白,生物可利用率,脂肪分解,zh_TW
dc.subject.keywordpolymethoxyflavones,nanoemulsion,soy protein isolate,bioavailability,lipolysis,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202002321
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2025-08-18-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202021241900.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved