請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.author | Ching-Hsiang Lin | en |
| dc.contributor.author | 林清翔 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:48:13Z | - |
| dc.date.available | 2025-08-19 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | 張立信 (2012) 。表面化學分析技術。奈米通訊。19卷 no.4。p.17-23。 Amaya-Delgado, L., Hidalgo-Lara, M. E. and Montes-Horcasitas, M. C. (2006). Hydrolysis of sucrose by invertase immobilized on nylon-6 microbeads. Food Chemistry, 99(2), 299-304. Califano, V., Sannino, F., Costantini, A., Avossa, J., Cimino, S. and Aronne, A. (2018). Wrinkled Silica Nanoparticles: Efficient Matrix for β-Glucosidase Immobilization. The Journal of Physical Chemistry C, 122(15), 8373-8379. Cao, F., Zhang, Y., Li, W., Shimizu, K., Xie, H. and Zhang, C. (2018). Mogroside IVE attenuates experimental liver fibrosis in mice and inhibits HSC activation through downregulating TLR4-mediated pathways. International Immunopharmacology, 55, 183-192. Carleysmith, S. W. and Lilly, M. D. (1979). Deacylation of Benzylpenicillin by Immobilized Penicillin Acylase in a Continuous 4-Stage Stirred-Tank Reactor. Biotechnology and Bioengineering, 21(6), 1057-1073. Chang, J., Lee, Y. S., Fang, S. J., Park, D. J. and Choi, Y. L. (2013). Hydrolysis of isoflavone glycoside by immobilization of beta-glucosidase on a chitosan-carbon in two-phase system. International Journal of Biological Macromolecules, 61, 465-470. Chariwat, P. and KanokornW. (2018). β-glucosidase enzyme screening from various parts of Tabebuia argentea. Suan Sunandha Science and Technology Journal, 6-10. Chen, J., Zhang, S., and Yang, X. (2013). Control of brown rot on nectarines by tea polyphenol combined with tea saponin. Crop Protection, 45, 29-35. Chiang H. H., Chen, K. I., Liu, C. T., Hsieh, S. C. and Cheng, K. C. (2015). Soymilk Isoflavone Conversion Prediction by Adaptive Neuro-Fuzzy Inference System. Transactions of the ASABE, 58(6), 1853-1860. Chen, K. I., Chiang, C. Y., Ko, C. Y., Huang, H. Y. and Cheng, K. C. (2018). Reduction of Phytic Acid in Soymilk by Immobilized Phytase System. Journal Food Science, 83(12), 2963-2969. Chen, K. I., Lo, Y. C., Liu, C. W., Yu, R. C., Chou, C. C. and Cheng, K. C. (2013). Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for beta-glucosidase. Food Chemistry, 139(1-4), 79-85. Chiu, C. H., Wang, R., Zhuang, S., Lin, P. Y., Lo, Y. C. and Lu, T. J. (2019). Biotransformation of mogrosides from Siraitia grosvenorii by Ganoderma lucidum mycelium and the purification of mogroside III E by macroporous resins. Journal of Food and Drug Analysis. 1-10. Chiu, C. H., Wang, R., Lee, C. C., Lo, Y. C. and Lu, T. J. (2013). Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 61(29), 7127-7134. Choi, N., Kim, H., Kim, B. H., Lee, J. and Kim, I. H. (2017). Production of Phytosteryl Ester from Echium Oil in a Recirculating Packed Bed Reactor Using an Immobilized Lipase. Journal of Oleo Science, 66(12), 1329-1335. de Oliveira, R. L., Dias, J. L., da Silva, O. S. and Porto, T. S. (2018). Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food and Bioproducts Processing, 109, 9-18. Diab, Y., Ioannou, E., Emam, A., Vagias, C. and Roussis, V. (2012). Desmettianosides A and B, bisdesmosidic furostanol saponins with molluscicidal activity from Yucca desmettiana. Steroids, 77(6), 686-690. Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843-847. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S. and Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296-302. Dodda, S. R., Aich, A., Sarkar, N., Jain, P., Jain, S., Mondal, S. and Mukhopadhyay, S. S. (2018). Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus. Journal of Molecular Structure, 1156, 105-114. Eskandarloo, H. and Abbaspourrad, A. (2018). Production of galacto-oligosaccharides from whey permeate using beta-galactosidase immobilized on functionalized glass beads. Food Chemistry, 251, 115-124. Faizal, A., and Geelen, D. (2013). Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12(4), 877-893. Gajšek, M., Jančič, U., Vasić, K., Knez, Ž. and Leitgeb, M. (2019). Enhanced activity of immobilized transglutaminase for cleaner production technologies. Journal of Cleaner Production, 240. Gong, G., Zheng, Z., Liu, H., Wang, L., Diao, J., Wang, P., and Zhao, G. (2014). Purification and characterization of a beta-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. Journal Microbiol Biotechnol, 24(6), 788-794. Halim, S. F. A., Kamaruddin, A. H. and Fernando, W. J. N. (2009). Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology and mass transfer studies. Bioresource Technology, 100(2), 710-716. Hama, S., Tamalampudi, S., Yoshida, A., Tamadani, N., Kuratani, N., Noda, H. and Kondo, A. (2011). Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. Biochemical Engineering Journal, 55(1), 66-71. Hassan, M., Ran, X., Yuan, Y., Luan, X. and Dou, D.Q. (2019). Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads. Bulletin of Materials Science, 42(1). Henrissat, B. (1991). A Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. Biochemical Journal, 280, 309-316. Henrissat, B. and Bairoch, A. (1993). New Families in the Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. Biochemical Journal, 293, 781-788. Homaei, A. (2015). Enzyme Immobilization and its Application in the Food Industry. Advances in Food Biotechnology ,145-164. Hostettmann, K., Marston, A. and Wolfender, J. L. (2005). Strategy in the search for new lead compounds and drugs from plants. Chimia, 59(6), 291-294. Jahanbakhshi, A. and Salehi, R. (2019). Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. Journal of Food Process Engineering, 42(7). Katrolia, P., Liu, X., Li, G. and Kopparapu, N. K. (2019). Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade beta-Galactosidases Immobilized on Various Supports: a Comparative Approach. Applied Biochemistry and Biotechnology, 188(2), 410-423. Katrolia, P., Liu, X., Li, J. and Kopparapu, N. K. (2019). Enhanced elimination of non-digestible oligosaccharides from soy milk by immobilized alpha-galactosidase: A comparative analysis. Journal Food Biochemistry, 43(11), e13005. Kessi, E. and Arias, J. L. (2019). Using Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for beta-Galactosidase Immobilization. Applied Biochem Biotechnol, 187(1), 101-115. Ko, C. Y., Liu, J. M., Chen, K. I., Hsieh, C. W., Chu, Y. L. and Cheng, K. C. (2018). Lactose-free milk preparation by immobilized lactase in glass microsphere bed reactor. Food Biophysics, 13(4), 353-361. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R. and Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377-397. Liu, C., Dai, L., Liu, Y., Rong, L., Dou, D., Sun, Y. and Ma, L. (2016). Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer. Nutrients, 8(6). Liu, D. M., Chen, J. and Shi, Y. P. (2019). alpha-Glucosidase immobilization on chitosan-modified cellulose filter paper: Preparation, property and application. International Journal of Biological Macromolecules, 122, 298-305. Liu, C., Dai, L. H., Liu, Y. P., Dou, D. Q., Sun, Y. X. and Ma, L. Q. (2018). Pharmacological activities of mogrosides. Future Medicinal Chemistry, 10(8), 845-850. Maicas, S. and Mateo, J. J. (2005). Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Applied Microbiology and Biotechnology, 67(3), 322-335. Mardani, T., Khiabani, M. S., Mokarram, R. R. and Hamishehkar, H. (2018). Immobilization of alpha-amylase on chitosan-montmorillonite nanocomposite beads. International Journal of Biological Macromolecules, 120 (Pt A), 354-360. Matsumoto, K., Kasai, R., Ohtani, K. and Tanaka, O. (1990). Minor Cucurbitane-Glycosides from Fruits of Siraitia Grosvenori (Cucurbitaceae). Chemical Pharmaceutical Bulletin, 38(7), 2030-2032. Migneault, I., Dartiguenave, C., Bertrand, M. J. and Waldron, a. K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37, 790-802. Miletic, N., Nastasovic, A. and Loos, K. (2012). Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresour Technol, 115, 126-135. Momeny, M., Jahanbakhshi, A., Jafarnezhad, K. and Zhang, Y. D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology, 166. Motohiko U., Toshihiro A., Harukuni T., Masakazu T., Teruo M., Norihiro B., Nishino, A. H. (2002). Inhibitory Effects of Cucurbitane Glycosides and Other Triterpenoids from the Fruit of Momordica grosvenori on Epstein-Barr Virus Early Antigen Induced by Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate. Journal of Agriculture and Food Chemistry, 50, 6710-6715. Nishida, V. S., de Oliveira, R. F., Brugnari, T., Correa, R. C. G., Peralta, R. A., Castoldi, R. and Peralta, R. M. (2018). Immobilization of Aspergillus awamori beta-glucosidase on commercial gelatin: An inexpensive and efficient process. International Journal of Biological Macromolecules, 111, 1206-1213. Odom, M. D. and Sharda, R. (1990). A neural network model for bankruptcy prediction. International Joint Conference on Neural Networks. 163-168. Pawar, R. S., Krynitsky, A. J. and Rader, J. I. (2013). Sweeteners from plants with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry, 405(13), 4397-4407. Ricardi, N. C., de Menezes, E. W., Valmir Benvenutti, E., da Natividade Schoffer, J., Hackenhaar, C. R., Hertz, P. F. and Costa, T. M. H. (2018). Highly stable novel silica/chitosan support for beta-galactosidase immobilization for application in dairy technology. Food Chemistry, 246, 343-350. Sabanci, K., Kayabasi, A. and Toktas, A. (2017). Computer vision-based method for classification of wheat grains using artificial neural network. Journal of the Science of Food and Agriculture, 97(8), 2588-2593. Simon-Herrero, C., Naghdi, M., Taheran, M., Kaur Brar, S., Romero, A., Valverde, J. L. and Sanchez-Silva, L. (2019). Immobilized laccase on polyimide aerogels for removal of carbamazepine. Journal of Hazardous Materials, 376, 83-90. Singh, R. S., Chauhan, K. and Kennedy, J. F. (2019). Immobilization of fungal inulinase on hetero-functionalized carbon nanofibers for the production of fructose from inulin. Food Science and Technology 116, 1-11. Singh, R. S., Singh, R. P. and Kennedy, J. F. (2017). Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. International Journal of Biological Macromolecules, 95, 87-93. Sojitra, U. V., Nadar, S. S.and Rathod, V. K. (2017). Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydrate Polymers, 157, 677-685. Sparg, S. G., Light, M. E. and van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94(2-3), 219-243. Su, E., Xia, T., Gao, L., Dai, Q. and Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 88(2-3), 83-89. Szakiel, A., Paczkowski, C. and Henry, M. (2011). Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 10(4), 471-491. Takahashi S, H. K., Hokari M, Gotoh T. and Sugiyama T. (2010). Inhibition of human renin activity by saponins. BioMed Research International, 31(32):155-159. Takemoto, T., Arihara, S., Nakajima, T. and Okuhira, M. (1983). Studies on the Constituents of Fructus Momordicae .3. Structure of Mogrosides. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 103(11), 1167-1173. Tang, H. F., Cheng, G., Wu, J., Chen, X. L., Zhang, S. Y., Wen, A. D. and Lin, H. W. (2009). Cytotoxic asterosaponins capable of promoting polymerization of tubulin from the starfish Culcita novaeguineae. Journal of Natural Products, 72(2), 284-289. Tang, H. T., Hou, J., Shen, Y., Xu, L. L., Yang, H., Fang, X. and Bao, X. M. (2013). High beta-Glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. Journal of Microbiology and Biotechnology, 23(11), 1577-1585. Tosa, T., Mori, T., Fuse, N. and Chibata, I. (1969). Studies on continuous enzyme reactions V. kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-Dl-amino acids. Agricultural and Biological Chemistry, 33(7), 1047-1050. Van Dyck, S., Gerbaux, P. and Flammang, P. (2010). Qualitative and quantitative saponin contents in five sea cucumbers from the Indian ocean. Marine Drugs, 8(1), 173-189. Vincken, J. P., Heng, L., de Groot, A. and Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68(3), 275-297. Wang, C., Liu, X., Zhang, M., Shao, H., Zhang, M., Wang, X. and Li, H. (2019). Efficient enzyme-assisted extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum using thermostable cellulase and immobilized beta-glucosidase. Frontiers in Microbiology, 10, 445. Wang, H. T., Yang, J. T., Chen, K. I., Wang, T. Y., Lu, T. J. and Cheng, K. C. (2019). Hydrolyzation of mogrosides: Immobilized beta-glucosidase for mogrosides deglycosylation from Lo Han Kuo. Food Sciences and Nutrition, 7(2), 834-843. Wang, N., Wu, R., Fu, Q., Wang, H., Zhang, Z., Haji, Z. and An, Y. (2018). Immobilization of β-glucosidase BglC on decanedioic acid-modified magnetic nanoparticles. Chemical Engineering Technology, 41(10), 1949-1955. Wu, H., Liang, Y., Shi, J., Wang, X., Yang, D. and Jiang, Z. (2013). Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. Materials Science and Engineering: C Materials for Biological Applications, 33(3), 1438-1445. Yalcin, H., Ozturk, I., Karaman, S., Kisi, O., Sagdic, O. and Kayacier, A. (2011). Prediction of effect of natural antioxidant compounds on hazelnut oil oxidation by adaptive neuro-fuzzy inference system and artificial neural network. Journal of Food Science, 76(4), T112-120. Yang, X., Chen, Y., Yao, S., Qian, J., Guo, H. and Cai, X. (2019). Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers, 218, 324-332. Yang, X. R., Xu, F., Li, D. P., Lu, F. L., Liu, G. X., Wang, L. and Cai, S. Q. (2016). Metabolites of siamenoside I and their distributions in rats. Molecules, 21(2), 176. Ye, L., Liu, X., Shen, G. H., Li, S. S., Luo, Q. Y., Wu, H. J. and Zhang, Z. Q. (2019). Properties comparison between free and immobilized wheat esterase using glass fiber film. International Journal of Biological Macromolecules, 125, 87-91. Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L. and Hu, P. (2012). Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Food Composition and Analysis, 25(2), 142-148. Zhong, J. J. (2010). Recent advances in bioreactor engineering. Korean Journal of Chemical Engineering, 27(4), 1035-1041. Zhu, X., Li, Y., Yang, G., Lv, M. and Zhang, L. (2019). Covalent immobilization of alkaline proteinase on amino-functionalized magnetic nanoparticles and application in soy protein hydrolysis. Biotechnology Progress, 35(2), e2756. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78259 | - |
| dc.description.abstract | 羅漢果 (Siraitia grosvenorii) 為中國廣西省桂林市特產之一,可作為中藥材使用,具有潤肺、舒緩咳嗽及預防便祕等功效。近年來,羅漢果皂苷相關的研究日漸增加,其中指出siamenoside Ⅰ具有比5%蔗糖水溶液563倍的甜度,且相較於其他羅漢果皂苷風味較佳,更適合作為甜味劑使用。mogroside Ⅳ可減緩肺纖維化症狀與抑制癌細胞增殖,在生醫藥產業中極具發展潛力。於先前的研究中常以化學水解的方式進行皂苷的轉換,但使用化學水解有環境危害及產量低的問題,故本研究目的為建立一固定化酵素的連續式生物反應器以生產siamenoside Ⅰ和mogroside Ⅳ,降低環境危害及有效提高產量並增加酵素再利用性。結果顯示固定化β-葡萄糖苷酶在戊二醛濃度1.5%、載體活化時間1小時及結合酵素時間12小時有最佳的相對活性,並且在60oC、pH 5的環境下有最佳反應活性,後續填充已固定β-葡萄糖苷酶之玻璃微粒(glass microspheres)至反應器中並維持最佳活性環境,利用控制流速的方式通入羅漢果萃取物水溶液,以0.3 mL/min的流速下可得最高濃度之siamenoside Ⅰ;0.2 mL/min的流速下可得最高濃度之mogroside Ⅳ。藉由開發此種固定化酵素系統以製備大量且純度高之siamenoside Ⅰ與mogroside Ⅳ。 | zh_TW |
| dc.description.abstract | Siraitia grosvenorii (Swingle) is abundant in Guangxi province, China. Several studies have reported its benefits, such as moisturizing lungs, soothing coughs, reducing blood pressure and preventing constipation. Recently, research related to mogroside is increasing. Siamenoside I has been reported to be 563 times sweeter than 5% sucrose solution without bitterness compared to others; Mogroside IV has also been found several positive effects for attenuating liver fibrosis and suppressing the proliferation of cancer cells. Mogroside IV shows high potential to be applied in pharmaceutical industry. Traditionally, the most common conversion method is acid hydrolysis which has some drawback, such as low efficiency and polluted environment. On the contrary, immobilized enzyme shows high specificity, reusability and stability. Therefore, our objective is to develop immobilized enzyme bioreactor system to produce the siamenoside Ⅰ and mogroside Ⅳ as well as improving its productivity. The results show that the optimal conditions of immobilization with glutaraldehyde concentration 1.5%, activation time 1 hour and coupling time 12 hours. Moreover, immobilized enzyme has the highest relative activity at 60℃ and pH 5. Subsequently, the glass microsphere with immobilized β-glucosidase was filled into the reactor and the optimal environment was maintained. We found that the most content of siamenoside I was transformed in feed rate 0.3 mL/min and mogroside IV was in 0.2 mL/min through introducing the solution of Luo Han Kuo extract. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:48:13Z (GMT). No. of bitstreams: 1 U0001-1208202011565600.pdf: 3215528 bytes, checksum: 358ea64e0f0fb9c7387c412940cb3b23 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 iii Abstract iv 目錄 v 壹、前言 1 貳、文獻回顧 2 2.1 皂素 2 2.1.1 來源 2 2.1.2 結構與分類 2 2.1.2 生理活性 3 2.2 羅漢果 (Siraitia grosvenorii Swingle) 4 2.2.1 羅漢果簡介 4 2.2.2 羅漢果皂苷 5 2.2.3 Mogroside IV、siamenoside I之生理活性 7 2.2.4 Mogroside IV、Siamenoside I形成機制 7 2.3 β-葡萄糖苷酶 9 2.3.1 簡介 9 2.3.2 活性檢測方法 9 2.3.3 β-D-葡萄糖苷酶應用 10 2.4 酵素固定化 11 2.4.1 簡介及特點 11 2.4.2 酵素固定化之載體 11 2.4.3 酵素固定化之方法 12 2.4.4 酵素固定化於食品工業之應用 16 2.4.5 酵素固定化近年相關研究 18 2.5 生物反應器 21 2.5.1 生物反應器介紹及種類 21 2.5.2 酵素固定化之生物反應器應用 21 參、研究目標與假設 23 3.1 研究目的 23 3.2 研究架構 23 3.3 圖像式摘要 24 肆、材料與方法 25 4.1 試驗藥品 25 4.2 設備儀器 26 4.3 實驗方法 27 4.3.1 玻璃微粒前處理 27 4.3.2 戊二醛最佳固定條件 27 4.3.3 固定化酵素 27 4.3.4 表面元素及化學鍵結分析 28 4.3.5 掃描式電子顯微鏡 28 4.3.6 比較最佳反應溫度及pH值 28 4.3.7 評估重複利用性及貯存穩定性 29 4.3.8 酵素動力學參數 29 4.3.9 生物反應器架設 29 4.3.10 羅漢果萃取方法探討 30 4.3.11 利用生物反應器將mogroside V轉換成siamenoside I和mogroside IV 31 4.3.12 羅漢果萃取物水解後之樣品分析前處理 31 4.3.13 高效液相層析儀分析 31 4.3.14 統計分析 31 伍、結果與討論 32 5.1 固定化酵素 32 5.1.1 固定酵素後之載體表面觀察 32 5.1.2 固定酵素後之載體鍵結情形 32 5.1.3 戊二醛固定最佳條件 36 5.1.4 固定化酵素之載體吸附量 40 5.2 載體評估 41 5.2.1 對硝基苯吸光值對濃度之檢量線 41 5.2.2 探討最佳反應環境條件 42 5.2.3 比較酵素動力學參數 45 5.2.4 重複利用性 50 5.2.5 貯存穩定性 50 5.3 利用生物反應器生產Siamenoside I、Mogroside IV 53 5.3.1 羅漢果皂苷萃取方式探討 53 5.3.2 Mogroside V、Siamenoside I、Mogroside IV和Mogroside IIIE之定量檢量線 55 5.3.3 以固定化酵素進行羅漢果皂苷之轉換 58 5.3.4生物反應器之架設 62 5.3.5利用生物反應器探討不同流速下羅漢果皂苷轉換結果 62 陸、結論與未來展望 65 柒、參考文獻 66 附錄 76 附錄一、人工神經網路 76 1.1 人工神經網路介紹及發展 76 1.2 人工神經網路之應用 77 1.3 以不同參數調整生物反應器 78 附錄二、個人簡歷表 80 附錄三、論文抄襲檢測結果 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 羅漢果苷Ⅳ | zh_TW |
| dc.subject | 賽門苷Ⅰ | zh_TW |
| dc.subject | 固定化酵素 | zh_TW |
| dc.subject | β-葡萄糖苷酶 | zh_TW |
| dc.subject | 羅漢果皂苷 | zh_TW |
| dc.subject | 羅漢果 | zh_TW |
| dc.subject | mogroside Ⅳ | en |
| dc.subject | siamenoside Ⅰ | en |
| dc.subject | immobilized enzyme | en |
| dc.subject | β-glucosidase | en |
| dc.subject | mogrosides | en |
| dc.subject | luo han kuo | en |
| dc.title | 建立固定化β-葡萄糖苷酶系統生產賽門苷Ⅰ和羅漢果苷Ⅳ | zh_TW |
| dc.title | Production of Siamenoside Ⅰ and Mogroside Ⅳ from Siraitia grosvenorii using immobilized β-glucosidase system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳錦樹(Chin-Shuh Chen),謝寶全(Pao-Chuan Hsieh),蔣欣翰,蘇正元 | |
| dc.subject.keyword | 羅漢果,羅漢果皂苷,β-葡萄糖苷酶,固定化酵素,賽門苷Ⅰ,羅漢果苷Ⅳ, | zh_TW |
| dc.subject.keyword | luo han kuo,mogrosides,β-glucosidase,immobilized enzyme,siamenoside Ⅰ,mogroside Ⅳ, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202003068 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202011565600.pdf 未授權公開取用 | 3.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
