Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78243
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成(Kuan-Chen Cheng)
dc.contributor.authorPin-Cheng Chenen
dc.contributor.author陳品丞zh_TW
dc.date.accessioned2021-07-11T14:47:31Z-
dc.date.available2025-08-19
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation中華民國經濟部標準檢驗局 (CNS) (1984)。食品中水分檢驗之方法。總號 5033。
中華民國經濟部標準檢驗局 (CNS) (1984)。食品中粗灰分檢驗之方法。總號 5034。
中華民國經濟部標準檢驗局 (CNS) (1984)。食品中粗脂肪檢驗之方法。總號 5036。
中華民國經濟部標準檢驗局 (CNS) (1984)。食品中粗蛋白之檢驗之方法。總號 5035。
中華民國經濟部標準檢驗局 (CNS) (1996)。麵包。總號 3899。
蔡碧仁 (2011)。臺灣藜簡介與機能性食品運用。食品資訊,242 : 54~57。
鄭伊娟 (2002)。臺灣藜之應用開發成果介紹。行政院農業出版品,217期。
郭耀綸、楊遠波、蔡碧仁、葛孟杰 (2008)。紅藜推廣手冊。行政院農業委員會林務局資料。
行政院農業委員會。農業出版品,298期。
聯合國糧食及農業組織。農糧組織統計數據庫。(FAOSTAT)。
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90.
Abedi, S., Yeganeh, S., Moradian, F., Ouraji, H. (2019). Isolation and Identification of Lactobacillus Strains from Dairy Products and Evaluation of Carbon Sources Effects on Bacterial Growth and Phytase Activity: Supplement for Fish Feed. Journal of Agricultural Science and Technology, 21(4), 845-855.
Amritha, G. K., Halami, P. M., Venkateswaran, G. (2017). Phytate dephosphorylation by Lactobacillus pentosus CFR 3. International journal of food science technology, 52(7), 1552-1558.
Axel, C., Brosnan, B., Zannini, E., Peyer, L. C., Furey, A., Coffey, A., Arendt, E. K. (2016). Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied microbiology and biotechnology, 100(4), 1701-1711.
Axel, C., Röcker, B., Brosnan, B., Zannini, E., Furey, A., Coffey, A., Arendt, E. K. (2015). Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 47, 36-44.
Bala, A., Singh, B. (2017). Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World Journal of Microbiology and Biotechnology, 33(6), 109.
Banu, I., Vasilean, I., Aprodu, I. (2010). Effect of lactic fermentation on antioxidant capacity of rye sourdough and bread. Food science and technology research, 16(6), 571-576.
Bartkiene, E., Bartkevics, V., Krungleviciute, V., Pugajeva, I., Zadeike, D., Juodeikiene, G. (2017). Lactic acid bacteria combinations for wheat sourdough preparation and their influence on wheat bread quality and acrylamide formation. Journal of food science, 82(10), 2371-2378.
Bartkiene, E., Bartkevics, V., Pugajeva, I., Krungleviciute, V., Mayrhofer, S., Domig, K. (2017). The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye-Wheat bread. Lebensmittel-Wissenschaft&Technologie, 80, 43-50.
Bartkiene, E., Vizbickiene, D., Bartkevics, V., Pugajeva, I., Krungleviciute, V., Zadeike, D., Juodeikiene, G. (2017). Application of Pediococcus acidilactici LUHS29 immobilized in apple pomace matrix for high value wheat-barley sourdough bread. Lebensmittel-Wissenschaft&Technologie-Food Science and Technology, 83, 157-164.
Belz, M. C., Axel, C., Arendt, E. K., Lynch, K. M., Brosnan, B., Sheehan, E. M., Zannini, E. (2019). Improvement of taste and shelf life of yeasted low-salt bread containing functional sourdoughs using Lactobacillus amylovorus DSM 19280 and Weisella cibaria MG1. International journal of food microbiology, 302, 69-79.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
Bhargava, A., Shukla, S., Ohri, D. (2006). Chenopodium quinoa—an Indian perspective. Industrial crops and products, 23(1), 73-87.
Bolívar‐Monsalve, J., Ceballos‐González, C., Ramírez‐Toro, C., Bolívar, G. A. (2018). Reduction in saponin content and production of gluten‐free cream soup base using quinoa fermented with Lactobacillus plantarum. Journal of Food Processing and Preservation, 42(2), 13495.
Bustos, A. Y., Gerez, C. L., Mohtar, L. G. M., Zanini, V. I. P., Nazareno, M. A., Taranto, M. P., Iturriaga, L. B. (2017). Lactic acid fermentation improved textural behaviour, phenolic compounds and antioxidant activity of chia (Salvia hispanica L.) dough. Food technology and biotechnology, 55(3), 381.
Buzzini, P., Lachance, M.-A., Yurkov, A. (2017). Yeasts in natural ecosystems: diversity: Springer.
Cauvain, S. (2012). Breadmaking: an overview. Breadmaking 9-31.
Cauvain, S. (2015). Principles of dough formation. Technology of breadmaking 303-337.
Church, F. C., Swaisgood, H. E., Porter, D. H., Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of dairy science, 66(6), 1219-1227.
Coda, R., Di Cagno, R., Gobbetti, M., Rizzello, C. G. (2014). Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology, 37, 51-58.
Coda, R., Varis, J., Verni, M., Rizzello, C. G., Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition. Lebensmittel-Wissenschaft&Technologie-Food Science and Technology, 82, 296-302.
Coda, R., Xu, Y., Moreno, D. S., Mojzita, D., Nionelli, L., Rizzello, C. G., Katina, K. (2018). Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes. Food Microbiology, 76, 164-172.
Corsetti, A. (2013). Technology of sourdough fermentation and sourdough applications. Handbook on sourdough biotechnology 85-103
Coulon, S., Chemardin, P., Gueguen, Y., Arnaud, A., Galzy, P. (1998). Purification and characterization of an intracellular β-glucosidase from Lactobacillus casei ATCC 393. Applied biochemistry and biotechnology, 74(2), 105-114.
Curiel, J. A., Coda, R., Centomani, I., Summo, C., Gobbetti, M., Rizzello, C. G. (2015). Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. International journal of food microbiology, 196, 51-61.
Dan-asabe, B., Galadi, A. (2017). Mathematical Modeling of the flexural strength, impact energy and water absorption of a pineapple fibre-HDPE composite using RSM technique. Journal of Polymer Composites, 5(2), 42-49.
Dastmalchi, F., Razavi, S. H., Faraji, M., Labbafi, M. (2016). Effect of Lactobacillus casei-casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll. Journal of food science and technology, 53(3), 1531-1539.
De La Hera, E., Rosell, C. M., Gomez, M. (2014). Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food chemistry, 151, 526-531.
De Vuyst, L., Harth, H., Van Kerrebroeck, S., Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International journal of food microbiology, 239, 26-34.
De Vuyst, L., Van Kerrebroeck, S., Leroy, F. (2017). Microbial ecology and process technology of sourdough fermentation. Advances in applied microbiology, 100, 49-160
Denardi‐Souza, T., Luz, C., Mañes, J., Badiale‐Furlong, E., Meca, G. (2018). Antifungal effect of phenolic extract of fermented rice bran with Rhizopus oryzae and its potential use in loaf bread shelf life extension. Journal of the Science of Food and Agriculture, 98(13), 5011-5018.
Di Meo, S., Napolitano, G., Venditti, P. (2019). Physiological and Pathological Role of ROS: Benefits and Limitations of Antioxidant Treatment. Multidisciplinary Digital Publishing Institute, 20(19), 4810
Erickson, D. R., Brekke, O. L., Falb, R. A., Mounts, T. L., Pryde, E. H. (1987). Handbook of soy oil processing and utilization.
Fang, H.-R., Zhang, G.-Q., Cheng, J.-Y., Li, Z.-Y. (2019). Efficacy of Lactobacillus-supplemented triple therapy for Helicobacter pylori infection in children: a meta-analysis of randomized controlled trials. European journal of pediatrics, 178(1), 7-16.
Fekri, A., Torbati, M., Khosrowshahi, A. Y., ShamLoo, H. B., Azadmard-Damirchi, S. (2020). Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food chemistry, 306, 125620.
Ferreira, L. M., Mendes-Ferreira, A., Benevides, C. M., Melo, D., Costa, A. S., Mendes-Faia, A., Oliveira, M. B. P. (2019). Effect of Controlled Microbial Fermentation on Nutritional and Functional Characteristics of Cowpea Bean Flours. Foods, 8(11), 530.
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.
Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of food composition and analysis, 24(7), 1043-1048.
Gabriele, M., Sparvoli, F., Bollini, R., Lubrano, V., Longo, V., Pucci, L. (2019). The Impact of Sourdough Fermentation on Non‐Nutritive Compounds and Antioxidant Activities of Flours from Different Phaseolus Vulgaris L. Genotypes. Journal of food science, 84(7), 1929-1936.
García-Mantrana, I., Monedero, V., Haros, M. (2015). Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread. Food chemistry, 178, 267-275.
Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International journal of food microbiology, 302, 103-113.
Gobbetti, M., Gänzle, M. (2012). Handbook on sourdough biotechnology
Gänzle, M., Ripari, V. (2016). Composition and function of sourdough microbiota: From ecological theory to bread quality. International journal of food microbiology, 239, 19-25.
Gänzle, M. G., Zheng, J. (2019). Lifestyles of sourdough lactobacilli–Do they matter for microbial ecology and bread quality? International journal of food microbiology, 302, 15-23.
Graf, B. L., Rojas‐Silva, P., Rojo, L. E., Delatorre‐Herrera, J., Baldeón, M. E., Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive reviews in food science and food safety, 14(4), 431-445.
Grand View Research. (2019). Bakery Product Market Size, Share Trends Analysis Report By Distribution Channel (Specialty Stores, Convenience Stores), By Product (Cakes Pastries, Breads Rolls, Cookies, Tortillas, Pretzels), And Segment Forecasts, 2019 - 2025
Griffiths, K., Aggarwal, B. B., Singh, R. B., Buttar, H. S., Wilson, D., De Meester, F. (2016). Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases, 4(3), 28.
Guzzo, J., Desroche, N., Weidmann, S. (2017). Physical and chemical stress factors in lactic acid bacteria. Biology of Microorganisms on Grapes, in Must and in Wine 397-419.
Hashemi, S. M. B., Gholamhosseinpour, A., Khaneghah, A. M. (2019). Fermentation of acorn dough by lactobacilli strains: Phytic acid degradation and antioxidant activity. Lebensmittel-Wissenschaft&Technologie, 100, 144-149.
Heitmann, M., Zannini, E., Arendt, E. (2018). Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Critical reviews in food science and nutrition, 58(7), 1152-1164.
Helou, C., Jacolot, P., Niquet-Léridon, C., Gadonna-Widehem, P., Tessier, F. J. (2016). Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread. Food chemistry, 190, 904-911.
Hsu, B., Lin, S., Inbaraj, B. S., Chen, B. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz.(djulis) by HPLC-DAD-ESI–MS/MS. Journal of pharmaceutical and biomedical analysis, 132, 109-116.
Hu, Y., Zhang, J., Zou, L., Fu, C., Li, P., Zhao, G. (2017). Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. International journal of biological macromolecules, 99, 622-629.
Huang, L., Liu, M., Huang, H., Wen, Y., Zhang, X., Wei, Y. (2018). Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules, 19(6), 1858-1868.
Irakli, M., Mygdalia, A., Chatzopoulou, P., Katsantonis, D. (2019). Impact of the combination of sourdough fermentation and hop extract addition on baking properties, antioxidant capacity and phenolics bioaccessibility of rice bran-enhanced bread. Food chemistry, 285, 231-239.
Jeske, S., Zannini, E., Lynch, K. M., Coffey, A., Arendt, E. K. (2018). Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute. International journal of food microbiology, 286, 31-36.
Jolliffe, I. T. (1986). Principal components in regression analysis. Principal component analysis, 129-155.
Kajala, I., Mäkelä, J., Coda, R., Shukla, S., Shi, Q., Maina, N. H., Tenkanen, M. (2016). Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Applied microbiology and biotechnology, 100(8), 3499-3510.
Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 209-224.
Karray, F., Campilho, A., Cheriet, F. (2017). Image Analysis and Recognition: 14th International Conference. Proceedings, 10317.
Kemp, S. E., Hort, J., Hollowood, T. (2018). Descriptive analysis in sensory evaluation.
Klein, G., Pack, A., Bonaparte, C., Reuter, G. (1998). Taxonomy and physiology of probiotic lactic acid bacteria. International journal of food microbiology, 41(2), 103-125.
Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science Technology, 15(2), 67-78.
Liu, F., Chen, Z., Shao, J., Wang, C., Zhan, C. (2017). Effect of fermentation on the peptide content, phenolics and antioxidant activity of defatted wheat germ. Food Bioscience, 20, 141-148.
Liu, T., Li, Y., Chen, J., Sadiq, F. A., Zhang, G., Li, Y., He, G. (2016). Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. Lebensmittel-Wissenschaft&Technologie -Food Science and Technology, 68, 91-97.
Mamhoud, A., Nionelli, L., Bouzaine, T., Hamdi, M., Gobbetti, M., Rizzello, C. G. (2016). Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation. International journal of food microbiology, 225, 9-19.
Mantzourani, I., Plessas, S., Odatzidou, M., Alexopoulos, A., Galanis, A., Bezirtzoglou, E., Bekatorou, A. (2019). Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food chemistry, 271, 259-265.
Martínez, M. M., Román, L., Gómez, M. (2018). Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food chemistry, 239, 295-303.
Mohammadi‐Kouchesfahani, M., Hamidi‐Esfahani, Z., Azizi, M. H. (2019). Isolation and identification of lactic acid bacteria with phytase activity from sourdough. Food science nutrition, 7(11), 3700-3708
Mondal, A., Datta, A. (2008). Bread baking–a review. Journal of Food Engineering, 86(4), 465-474.
Montemurro, M., Pontonio, E., Gobbetti, M., Rizzello, C. G. (2019). Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International journal of food microbiology, 302, 47-58.
Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments.
Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S., Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods. FEMS microbiology letters, 334(1), 1-15.
Nami, Y., Gharekhani, M., Aalami, M., Hejazi, M. A. (2019). Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. Journal of food science and technology, 56(9), 4057-4067.
Naranjo, R. D. D. P., Otaiza, S., Saragusti, A. C., Baroni, V., Carranza, A. d. V., Peralta, I. E., Asis, R. (2016). Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food chemistry, 206, 146-155.
Navruz-Varli, S., Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
Nionelli, L., Pontonio, E., Gobbetti, M., Rizzello, C. G. (2018). Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. International journal of food microbiology, 266, 173-182.
Nutter, J., Fritz, R., Saiz, A. I., Iurlina, M. O. (2017). Effect of honey supplementation on sourdough: Lactic acid bacterial performance and gluten microstructure. Lebensmittel-Wissenschaft&Technologie, 77, 119-125.
Ogodo, A. C., Ugbogu, O. C., Onyeagba, R. A., Okereke, H. C. (2017). Effect of lactic acid bacteria consortium fermentation on the proximate composition and in-Vitro starch/protein digestibility of maize. American Journal of Microbiology and Biotechnology, 4(4), 35-43.
Omoba, O. S., Isah, L. R. (2018). Influence of Sourdough Fermentation on Amino Acids Composition, Phenolic Profile, and Antioxidant Properties of Sorghum Biscuits. Preventive nutrition and food science, 23(3), 220.
Ooms, N., Delcour, J. A. (2019). How to impact gluten protein network formation during wheat flour dough making. Current Opinion in Food Science, 25, 88-97.
Panigrahi, P., Parida, S., Nanda, N. C., Satpathy, R., Pradhan, L., Chandel, D. S., Misra, P. R. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature, 548(7668), 407.
Papadimitriou, K., Zoumpopoulou, G., Georgalaki, M., Alexandraki, V., Kazou, M., Anastasiou, R., Tsakalidou, E. (2019). Sourdough Bread. Innovations in Traditional Foods, 127-158.
Pasqualone, A., Caponio, F., Pagani, M. A., Summo, C., Paradiso, V. M. (2019). Effect of salt reduction on quality and acceptability of durum wheat bread. Food chemistry, 289, 575-581.
Repo-Carrasco, R., Espinoza, C., Jacobsen, S.-E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food reviews international, 19(1-2), 179-189.
Rinaldi, M., Paciulli, M., Caligiani, A., Sgarbi, E., Cirlini, M., Dall’Asta, C., Chiavaro, E. (2015). Durum and soft wheat flours in sourdough and straight-dough bread-making. Journal of food science and technology, 52(10), 6254-6265.
Ripari, V., Bai, Y., Gänzle, M. G. (2019). Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiology, 77, 43-51.
Rizzello, C. G., Lorusso, A., Montemurro, M., Gobbetti, M. (2016). Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 56, 1-13.
Rizzello, C. G., Lorusso, A., Russo, V., Pinto, D., Marzani, B., Gobbetti, M. (2017). Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International journal of food microbiology, 241, 252-261.
Ruiz‐Rodríguez, L., Bleckwedel, J., Eugenia Ortiz, M., Pescuma, M., Mozzi, F. (2017). Lactic acid bacteria. Industrial Biotechnology: Microorganisms, 1, 395-451.
Sadeghi, A., Ebrahimi, M., Mortazavi, S. A., Abedfar, A. (2019). Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food control, 95, 298-307.
Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature reviews Gastroenterology hepatology, 1-12.
Scheuer, P. M., Luccio, M. D., Zibetti, A. W., de Miranda, M. Z., de Francisco, A. (2016). Relationship between Instrumental and Sensory Texture Profile of Bread Loaves Made with Whole‐Wheat Flour and Fat Replacer. Journal of texture studies, 47(1), 14-23.
Settanni, L. (2017). Sourdough and cereal‐based foods: Traditional and innovative products. Starter cultures in food production, 199.
Settanni, L., Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 27(6), 691-697.
Shahidi, F., Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of functional foods, 18, 820-897.
Siddiqui, T., Zia, M. K., Ali, S. S., Rehman, A. A., Ahsan, H., Khan, F. H. (2016). Reactive oxygen species and anti-proteinases. Archives of physiology and biochemistry, 122(1), 1-7.
Sirilun, S., Sivamaruthi, B. S., Kesika, P., Peerajan, S., Chaiyasut, C. (2017). Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pacific journal of tropical biomedicine, 7(10), 930-936.
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of cereal science, 55(2), 132-138.
Tchabo, W., Ma, Y., Kwaw, E., Zhang, H., Li, X. (2017). Influence of fermentation parameters on phytochemical profile and volatile properties of mulberry (Morus nigra) wine. Journal of the Institute of Brewing, 123(1), 151-158.
Thakur, A., Panesar, P. S., Saini, M. S. (2019). Optimization of process parameters and estimation of kinetic parameters for lactic acid production by Lactobacillus casei MTCC 1423. Biomass Conversion and Biorefinery, 9(2), 253-266.
Tian, M., Fang, B., Jiang, L., Guo, H., Cui, J., Ren, F. (2015). Structure-activity relationship of a series of antioxidant tripeptides derived from β-Lactoglobulin using QSAR modeling. Dairy science technology, 95(4), 451-463.
Tsai, P.-J., Chen, Y.-S., Sheu, C.-H., Chen, C.-Y. (2011). Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). Journal of agricultural and food chemistry, 59(5), 1814-1820.
Verni, M., Verardo, V., Rizzello, C. G. (2019). How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods, 8(9), 362.
Verni, M., Wang, C., Montemurro, M., De Angelis, M., Katina, K., Rizzello, C. G., Coda, R. (2017). Exploring the microbiota of faba bean: Functional characterization of lactic acid bacteria. Frontiers in microbiology, 8, 2461.
Wang, N., Hou, G. G., Dubat, A. (2017). Effects of flour particle size on the quality attributes of reconstituted whole-wheat flour and Chinese southern-type steamed bread. Lebensmittel-Wissenschaft&Technologie -Food Science and Technology, 82, 147-153.
Wang, S., Zhu, F. (2016). Formulation and quality attributes of quinoa food products. Food and bioprocess technology, 9(1), 49-68.
Wolter, A., Hager, A.-S., Zannini, E., Galle, S., Gänzle, M., Waters, D. M., Arendt, E. K. (2014). Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiology, 37, 44-50.
Xu, D., Tang, K., Hu, Y., Xu, X., Gänzle, M. G. (2018). Effect of glutathione dehydrogenase of Lactobacillus sanfranciscensis on gluten properties and bread volume in type I wheat sourdough bread. Journal of agricultural and food chemistry, 66(37), 9770-9776.
Xu, X., Luo, Z., Yang, Q., Xiao, Z., Lu, X. (2019). Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food chemistry, 294, 87-95.
Yang, J., Lee, J. (2019). Application of sensory descriptive analysis and consumer studies to investigate traditional and authentic foods: A review. Foods, 8(2), 54.
Yao, Y., Wu, M., Huang, Y., Li, C., Pan, X., Zhu, W., Huang, Y. (2017). Appropriately raising fermentation temperature beneficial to the increase of antioxidant activity and gallic acid content in Eurotium cristatum-fermented loose tea. Lebensmittel-Wissenschaft&Technologie -Food Science and Technology, 82, 248-254.
Zhang, B., Yang, Z., Huang, W., Omedi, J. O., Wang, F., Zou, Q., Zheng, J. (2019). Isoflavone aglycones enrichment in soybean sourdough bread fermented by lactic acid bacteria strains isolated from traditional Qu starters: Effects on in vitro gastrointestinal digestion, nutritional, and baking properties. Cereal Chemistry, 96(1), 129-141.
Zhao, C. J., Gänzle, M. G. (2016). Synthesis of taste-active γ-glutamyl dipeptides during sourdough fermentation by Lactobacillus reuteri. Journal of agricultural and food chemistry, 64(40), 7561-7568.
Zhu, Y., Wang, Z., Zhang, L. (2019). Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensmittel-Wissenschaft&Technologie, 111, 211-217.
Zou, T.-B., He, T.-P., Li, H.-B., Tang, H.-W., Xia, E.-Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1), 72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78243-
dc.description.abstract隨著近年人們越來越關注健康,對於機能性食品需求有增加趨勢,探討增進食品營養及品質的方法成為一項熱門的研究主題。其中,探討酸麵團增加麵包營養性的研究逐漸的受到關注。許多文獻證實,經乳酸菌發酵的酸麵團可以增加麵團中抗氧化能力並改善麵包的質地。本實驗之目的期望能增加酸麵團的活性成分,開發出具營養價值的烘焙產品。本實驗選用臺灣藜 (Chenopodium formosanum),臺灣藜為臺灣原生種假榖類植物。實驗針對23株常用於食品發酵之乳酸菌對臺灣藜進行發酵,以Lactobacillus casei BCRC10697發酵24 hr後能降低pH值至4.6且蛋白酶水解活性相較控制組提升1.88倍。藉由反應曲面法以總抗氧化能力作為指標最適化發酵條件。以發酵溫度33.5oC、果糖添加量7.7%及麵團轉換比332.8得最佳之總抗氧化能力為6.82 trolox mmole/kg。與未發酵臺灣藜相比最適化之臺灣藜總抗氧化力提升63%且DPPH自由基抑制能力約提升20%。隨後將發酵臺灣藜取代部分麵粉製成小圓麵包,添加20及25%之臺灣藜酸麵包其總抗氧化力為3.36 trolox mmole/kg,同時總多酚及總類黃酮含量分別為4.23 mg GAE/g、3.46 mg QE/g 比起未發酵之臺灣藜麵包組別提升了18%跟40%。質地分析結果中,添加酸麵團組別麵包整體硬度及咀嚼性提升。麵包在一般環境下的保存試驗中,酸麵團組別比起未發酵組別延長了約2天的儲藏期。經本實驗開發製成之臺灣藜酸麵團具有提升麵包之機能性及儲藏性,提供未來臺灣藜機能性食品開發之另一具潛力的加工形式。zh_TW
dc.description.abstractWith the increasing concern to health in recent years, exploring ways to improve the nutrition and quality of food has become an important subject. Among them, the increasing of bread nutrition by sourdough fermentation has gradually drawn attention to public. Many literatures have confirmed that sourdough fermented by certain lactic acid bacteria can increase antioxidant capacity, and also improve the texture. The purpose of this study is to enhance the bioactive compounds of sourdough and to develop a nutritionally valuable bakery product. Djulis (Chenopodium formosanum), a native plant of Taiwan, was utilized in this study. In this study we fermented djulis by 23 different lactic acid bacteria. Results showed Lactobacillus casei BCRC10697 can lower the pH value to 4.6 and increase proteolysis ability to 1.88 times relative to control after 24 hours fermentation. In addition, we used response surface methodology to optimize the trolox equivalent antioxidant capacity of djulis during fermentation. The condition was at temperature 33.5oC, fructose content 7.7% and dough yield 332.8, which showed the optimal result of TEAC 6.82 mmole /kg. Comparing to unfermented djulis, the optimal product increased 63% of TEAC and 20% of DPPH. Subsequently, the fermented djulis was replaced with a part of wheat flour to make bun. The bioactive compounds of total phenolic and flavonoid compounds were 4.23 mg GAE/g and 3.46 mg QE/g relatively comparing to unfermented djulis bread which increasing18% and 40%. In the results of texture analysis, hardness and chewiness of sourdough bread increased. In addition, shelf life of sourdough bread can extend approximately two days. This experiment developed the djulis sourbread with good functionality and shelf life, which provided potential processing way for developing the djulis functional food.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:47:31Z (GMT). No. of bitstreams: 1
U0001-1308202002383500.pdf: 6065447 bytes, checksum: 3c9919532b8c2ee73a635981682ba11b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 iv
壹、前言 1
貳、文獻回顧 2
2.1 藜麥 2
2.1.1 簡介 2
2.1.2 營養成分 5
2.1.3 機能性成分 7
2.1.4 抗營養因子 11
2.2 乳酸菌 11
2.2.1 簡介 11
2.2.2 碳水化合物代謝 11
2.2.3 生理活性 13
2.2.4 乳酸菌於食品上應用 13
2.3 麵包 15
2.3.1 簡介 15
2.3.2 原料 15
2.3.3 麵包製程 17
2.4 酸麵團 18
2.4.1 簡介 18
2.4.2 微生物菌相 18
2.4.3 酸麵團發酵方式 19
2.4.4 麵包質地改善 21
2.4.5 營養價值 21
2.5 抗氧化活性 24
2.5.1 活性氧物質 24
2.5.2 酚類物質 25
2.5.3 抗氧化胜肽 28
2.5.3 抗氧化活性之生理功效 28
2.6 反應曲面法 30
2.7 官能品評 32
2.7.1 簡介 32
2.7.2 描述分析 32
2.7.3 消費者喜好性分析 32
參、研究目標與假設 33
3.1研究目的 33
3.2 實驗架構 34
肆、材料與方法 36
4.1實驗材料 36
4.1.1 樣品 36
4.1.2 菌種 36
4.1.3 藥品 37
4.1.4 實驗儀器 39
4.2 實驗方法 40
4.2.1 乳酸菌活化與保存 40
4.2.1.1 乳酸菌活化 40
4.2.1.2 冷凍保存 40
4.2.2 臺灣藜酸麵團製作 40
4.2.2.1 樣品製備 40
4.2.2.2 臺灣藜發酵 40
4.2.3 酸麵包製作 41
4.2.4 乳酸菌選取 42
4.2.4.1 總生菌數計數 42
4.2.4.2 pH值測定 42
4.2.4.3 蛋白水解活性及總胜肽含量測定 42
4.2.5 抗氧化活性測定 42
4.2.5.1 2,2-Diphenyl-1picryl-hydrazyl 抗氧化活性測定 42
4.2.5.2 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid抗氧化能力測定 43
4.2.5.3 總抗氧化能力 (trolox equivalent antioxidant capacity,TEAC )測定 43
4.2.6 反應曲面法實驗設計 44
4.2.7 功能性成分測定 44
4.2.7.1 總多酚 44
4.2.7.2 總類黃酮 45
4.2.8 物性測定 45
4.2.8.1 質地分析 45
4.2.8.2 麵包比體積分析 45
4.2.8.3 孔洞分析 45
4.2.9 營養成分分析 46
4.2.9.1水分 46
4.2.9.2灰分 46
4.2.9.3 粗脂肪 47
4.2.9.4 粗蛋白 48
4.2.9.5碳水化合物 49
4.2.10 麵包保存期限評估試驗 49
4.2.11官能品評 50
4.2.11.1 主成分分析法 50
4.2.12統計分析 52
伍、結果與討論 53
5.1乳酸菌菌種選取 53
5.2 最適化發酵條件 56
5.3 以反應曲面法最適化發酵條件 59
5.3.1 不同起始pH值 59
5.3.2 不同無機鹽類添加 60
5.3.3 不同發酵溫度探討 63
5.3.4 不同麵團轉換比 63
5.3.5 不同碳源添加 66
5.3.6 不同果糖濃度添加 66
5.3.7 反應曲面法實驗結果 69
5.4 最適化臺灣藜酸麵團活性成分 74
5.4.1 抗氧化活性 74
5.4.2 總酚及總類黃酮 78
5.4.3 總胜肽含量 81
5.5 小圓麵包之活性成分 83
5.5.1 抗氧化活性 83
5.5.2 總酚及總類黃酮 86
5.5.3 總胜肽含量 89
5.6 小圓麵包之質地測定 91
5.7 麵包一般成分分析 94
5.8 麵包保存期限 96
5.9 官能品評 98
5.9.1 消費者喜好性分析 98
5.9.2 描述性分析 100
陸、結論與未來展望 102
柒、參考文獻 103
dc.language.isozh-TW
dc.subject臺灣藜zh_TW
dc.subject抗氧化活性zh_TW
dc.subject乳酸菌zh_TW
dc.subject酸麵團zh_TW
dc.subjectChenopodium formosanumen
dc.subjectsourdoughen
dc.subjectlactic acid bacteriaen
dc.subjectantioxidant activityen
dc.title開發乳酸菌發酵之臺灣藜酸麵團zh_TW
dc.titleDevelop Chenopodium formosanum Sourdough Fermented By Lactic Acid Bacteriaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid鄭光成(0000-0003-0387-7804)
dc.contributor.oralexamcommittee陳錦樹(Chin-Shuh Chen),謝寶全(Pao-Chuan Hsieh),楊麗嬋(Li-Chan Yang),蘇正元(Zheng-Yuan Su)
dc.subject.keyword酸麵團,乳酸菌,抗氧化活性,臺灣藜,zh_TW
dc.subject.keywordsourdough,lactic acid bacteria,antioxidant activity,Chenopodium formosanum,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202003185
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2025-08-19-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202002383500.pdf
  未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved