Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌(Been-Huang Chiang)
dc.contributor.authorYu-Hsuan Kaoen
dc.contributor.author高鈺瑄zh_TW
dc.date.accessioned2021-07-11T14:47:12Z-
dc.date.available2025-08-18
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-16
dc.identifier.citation魏永生、鄭敏燕、耿薇 劉建。常用動、植物食用油中脂肪酸组成的分析。食品科學, 2012, 33(16), 188-193.
Abdel-Aal, S. M., Rabalski, I., Composition of lutein ester regioisomers in marigold flower, dietary supplement, and herbal tea. Journal of Agricultural and Food Chemistry, 2015, 63(44), 9740-9746.
Alejandre, M., Astiasarán, I., Ansorena, D., Barbut, S. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Research International, 2019, 122, 129-136.
Angelico, R., Ceglie, A., Colafemmina, G., Delfine, F., Olsson, U., Palazzo, G. Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems. Langmuir, 2004, 20(3), 619-631.
Arora, J. S. Introduction to optimum design. 2004 Elsevier.
Barbut, S., Wood, J., Marangoni, A. Potential use of organogels to replace animal fat in comminuted meat products. Meat Science, 2016, 122, 155-162.
Barbut, S., Wood, J., Marangoni, A. Quality effects of using organogels in breakfast sausage. Meat Science, 2016, 122, 84-89.
Baik, O. D., Mittal, G. S. Dynamics of changes in viscoelastic properties of a tofu during frying. International Journal of Food Properties, 2006, 9(1), 73-83.
Bhattacharya, S. Stress relaxation behaviour of moth bean flour dough: Product characteristics and suitability of model. Journal of Food Engineering, 2010, 97(4), 539-546.
Bodennec, M., Guo, Q., Rousseau, D. Molecular and microstructural characterization of lecithin-based oleogels made with vegetable oil. RSC advances, 2016, 6(53), 47373-47381.
Borwankar, R. P. Food texture and rheology: a tutorial review. Journal of Food Engineering, 1992, 16: 1–16.
Bot, A., den Adel, R., Roijers, E. C. Fibrils of γ‐oryzanol+ β‐sitosterol in edible oil organogels. Journal of the American Oil Chemists' Society, 2008, 85(12), 1127-1134.
Braccini, I., Pérez, S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001, 2(4), 1089-1096.
Brandt, M. A., Skinner, E. Z., Coleman, J. A. Texture profile method. Journal of Food Science, 1963, 28(4), 404-409.
Brito-de la Fuente, E., Ekberg, O., Gallegos, C. Rheological aspects of swallowing and dysphagia. Dysphagia, 2011, (pp. 493-506). Springer, Berlin, Heidelberg.
Caine, W. R., Aalhus, J. L., Best, D. R., Dugan, M. E. R., Jeremiah, L. E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science, 2003, 64(4), 333-339.
Chambers iv, E., Bowers, J. R. Consumer perception of sensory qualities in muscle foods. Food Technology (Chicago), 1993, 47(11), 116-120.
Chan, E. S., Lim, T. K., Voo, W. P., Pogaku, R., Tey, B. T., Zhang, Z. Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 2011, 9(3), 228-234.
Chaves, K. F., Barrera-Arellano, D., Ribeiro, A. P. B. Potential application of lipid organogels for food industry. Food Research International, 2018, 105, 863-872.
Ching, S. H., Bansal, N., Bhandari, B. Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 2017, 57(6), 1133-1152.
Chitnis, C. E., Ohman, D. E. Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. Journal of Bacteriology, 1990 172(6), 2894-2900.
Choi, Y. S., Park, K. S., Kim, H. W., Hwang, K. E., Song, D. H., Choi, M. S., Kim, C. J. Quality characteristics of reduced-fat frankfurters with pork fat replaced by sunflower seed oils and dietary fiber extracted from makgeolli lees. Meat Science, 2013, 93(3), 652-658.
Cierach, M., Majewska, K. Comparison of instrumental and sensory evaluation of texture of cured and cooked beef meat. Food/Nahrung, 1997, 41(6), 366-369.
Davidovich-Pinhas, M., Barbut, S., Marangoni, A. G. The gelation of oil using ethyl cellulose. Carbohydrate Polymers, 2015, 117, 869-878.
De Huidobro, F. R., Miguel, E., Blázquez, B., Onega, E. A comparison between two methods (Warner–Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Science, 2005, 69(3), 527-536.
Deepthi, R., Bhargavi, R., Jagadeesh, K., Vijaya, M. S. Rheometric studies on agarose gel-A brain mimic material. SASTech-Technical Journal of RUAS, 2010, 9(2), 27-30.
Draget, K. I., Bræk, G. S., Smidsrød, O. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydrate Polymers, 1994, 25(1), 31-38.
Draget, K. I., Smidsrød, O., Skjåk‐Bræk, G. Alginates from algae. Biopolymers, 2005, 6. (pp. 215-244)
Draget, K. I. Alginates. Handbook of hydrocolloids, 2009 (pp. 807-828). Woodhead Publishing.
Epaarachchi, J. A. The effect of viscoelasticity on fatigue behaviour of polymer matrix composites. In Creep and Fatigue in Polymer Matrix Composites, 2011, (pp. 492-513). Woodhead Publishing.
Finney, E. E. Elementary concepts of rheology relevant to food texture studies. Texture measurements of foods. 1973 (pp. 33-51). Springer, Dordrecht.
Gaudino, N., Ghazani, S. M., Clark, S., Marangoni, A. G., Acevedo, N. C. Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International, 2019, 116, 79-89.
Gravelle, A. J., Barbut, S., Quinton, M., Marangoni, A. G. Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. Journal of Food Engineering, 2014, 143, 114-122.
Hamann, D. D. Rheology and texture properties of surimi and surimi-based foods. Surimi Technology, 1992, 429-500.
Han, L. J., Li, L., Zhao, L., Li, B., Liu, G. Q., Liu, X. Q., Wang, X. D. Rheological properties of organogels developed by sitosterol and lecithin. Food Research International, 2013, 53(1), 42-48.
Jadhav, S. R., Hwang, H., Huang, Q., John, G. Medium-chain sugar amphiphiles: a new family of healthy vegetable oil structuring agents. Journal of Agricultural and Food Chemistry, 2013, 61(49), 12005-12011.
Khuri, A. I., Mukhopadhyay, S. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, .2(2), 128-149.
Kouzounis, D., Lazaridou, A., Katsanidis, E. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science, 2017, 130, 38-46.
Kubo, M. T., Rojas, M. L., Miano, A. C., Augusto, P. E. Rheological Properties of Tomato Products. 2019.
Kunieda, H., Ohyama, K. I. Three-phase behavior and HLB numbers of bile salts and lecithin in a water-oil system. Journal of Colloid and Interface Science, 1990, 136(2), 432-439.
Kuo, C. K., Ma, P. X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001, 22(6), 511-521.
LeRoux, M. A., Guilak, F. Setton, L. A. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. Journal of Biomedical Materials Research, 1999, 47(1), 46-53.
Liu, X. D., Yu, W. Y., Zhang, Y., Xue, W. M., Yu, W. T., Xiong, Y., ... Yuan, Q. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. Journal of Microencapsulation, 2002, 19(6), 775-782.
Lupi, F. R., Greco, V., Baldino, N., de Cindio, B., Fischer, P. Gabriele, D. The effects of intermolecular interactions on the physical properties of organogels in edible oils. Journal of Colloid and Interface Science, 2016, 483, 154-164.
Mancini, M., moresi, M., rancini, R. Uniaxial compression and stress relaxation tests on alginate gels. Journal of Texture Studies, 1999, 30(6), 639-657.
Marangoni, A. G., Garti, N. An overview of the past, present, and future of organogels. Edible Oleogels, 2011, (pp. 1-17). AOCS Press.
Marangoni, A. G. Organogels: an alternative edible oil-structuring method. Journal of the American Oil Chemists' Society, 2012, 89(5), 749-780.
Marquez, E. J., Ahmed, E. M., West, R. L., Johnson, D. D. Emulsion stability and sensory quality of beef frankfurters produced at different fat or peanut oil levels. Journal of Food Science, 1989, 54(4), 867-870.
Martins, A. J., Vicente, A. A., Cunha, R. L., Cerqueira, M. A. Edible oleogels: an opportunity for fat replacement in foods. Food Function, 2018, 9(2), 758-773.
McEvoy, C. T., Temple, N., Woodside, J. V. Vegetarian diets, low-meat diets and health: a review. Public Health Nutrition, 2005, 15(12), 2287-2294.
Mitchell, J. R., Blanshard, J. M. V. Rheological properties of pectate gels. Journal of Texture Studies, 1976, 7(3), 341-351.
Moschakis, T., Panagiotopoulou, E., Katsanidis, E. Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties. LWT, 2016, 73, 153-161.
Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley Sons. 2016.
Nielsen, S. S. Rheological principles for food analysis. Food analysis, 1998, 553-569.
Nieuwenhuyzen, W., Szuhaj, B. F. Effects of lecithins and proteins on the stability of emulsions. Lipid/Fett, 1998, 100(7), 282-291.
Nishimura, T. The role of intramuscular connective tissue in meat texture. Animal Science Journal, 2010, 81(1), 21-27.
Patel, A. R., Dewettinck, K. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and technology, 2015, 117(11), 1772-1781.
Peleg, M. Characterization of the stress relaxation curves of solid foods. Journal of Food Science, 1979, 44(1), 277-281.
Pernetti, M., van Malssen, K. F., Flöter, E., Bot, A. Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid Interface Science, 2007, 12(4-5), 221-231.
Poncelet, D., De Smet, B. P., Beaulieu, C., Huguet, M. L., Fournier, A., Neufeld, R. J. Production of alginate beads by emulsification/internal gelation. II. Physicochemistry. Applied Microbiology and Biotechnology, 1995, 43(4), 644-650.
Poncelet, D. Production of alginate beads by emulsification/internal gelation. Annals of the New York Academy of Sciences, 2001, 944(1), 74-82.
Quinchia, L. A., Valencia, C., Partal, P., Franco, J. M., Brito-De La Fuente, E., Gallegos, C. Linear and non-linear viscoelasticity of puddings for nutritional management of dysphagia. Food Hydrocolloids, 2011, 25(4), 586-593.
Ramírez-Gómez, N. O., Acevedo, N. C., Toro-Vázquez, J. F., Ornelas-Paz, J. J., Dibildox-Alvarado, E., Pérez-Martínez, J. D. Phase behavior, structure and rheology of candelilla wax/fully hydrogenated soybean oil mixtures with and without vegetable oil. Food Research International, 2016, 89, 828-837.
Raut, S., Bhadoriya, S. S., Uplanchiwar, V., Mishra, V., Gahane, A., Jain, S. K. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharmaceutica Sinica B, 2012, 2(1), 8-15.
Reis, C. P., Neufeld, R. J., Vilela, S., Ribeiro, A. J., Veiga, F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. Journal of Microencapsulation, 2006, 23(3), 245-257.
Ribeiro, A. J., Silva, C., Ferreira, D., Veiga, F. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences, 2005, 25(1), 31-40.
Saláková, A. Instrumental measurement of texture and color of meat and meat products. Maso International, 2012, 2, 107-114.
Sato, K. Crystallization behaviour of fats and lipids—a review. Chemical Engineering Science, 2001, 56(7), 2255-2265.
Scartazzini, R., Luisi, P. L. Organogels from lecithins. The Journal of Physical Chemistry, 1988, 92(3), 829-833.
Shaikh, I. M., Jadhav, K. R., Kadam, V. J. Lecithin organogels in enhancing skin delivery of drugs. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, 2015, (pp. 299-313). Springer, Berlin, Heidelberg.
Shama, F., Sherman, P. Stress relaxation during force‐compression studies on foods with the Instron Universal Testing Machine and its implications. Journal of Texture Studies, 1973, 4(3), 353-362.
Shchipunov, Y. A., Hoffmann, H. Growth, branching, and local ordering of lecithin polymer-like micelles. Langmuir, 1998, 14(22), 6350-6360.
Shchipunov, Y. A., Hoffmann, H. Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles. Rheologica Acta. 2000, 39(6), 542-553.
Silverman, J. R., John, G. Biobased fat mimicking molecular structuring agents for medium-chain triglycerides (mcts) and other edible oils. Journal of Agricultural and Food Chemistry, 2015, 63(48), 10536-10542.
Simcikas, S. Is the percentage of vegetarians and vegans in the US increasing? Animal Charity Evaluators, 2018.
Siraj, N., Shabbir, M. A., Ahmad, T., Sajjad, A., Khan, M. R., Khan, M. I., Butt, M. S. Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties, 2015, 18(9), 1973-1989.
Smidsrød, O., Skja, G. Alginate as immobilization matrix for cells. Trends in biotechnology, 1990, 8, 71-78.
Sreekala, M. S., Kumaran, M. G., Joseph, R., Thomas, S. Stress-relaxation behaviour in composites based on short oil-palm fibres and phenol formaldehyde resin. Composites Science and Technology, 2001, 61(9), 1175-1188.
Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., Marangoni, A. G. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 2012, 24(7), 151-154.
Szczesniak, A. S. Classification of Textural Characteristics a. Journal of Food Science, 1963, 28(4), 385-389.
Tabilo-Munizaga, G., Barbosa-Cánovas, G. V. Rheology for the food industry. Journal of Food Engineering, 2005, 67(1-2), 147-156.
Tobolsky, A. V. Stress relaxation studies of the viscoelastic properties of polymers. Journal of Applied Physics, 1956, 27(7), 673-685.
Vadde, K. K., Syrotiuk, V. R., Montgomery, D. C. Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 2006, 5(6), 627-639.
Valoppi, F., Calligaris, S., Barba, L., Šegatin, N., Poklar Ulrih, N., Nicoli, M. C. Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride‐based organogel. European Journal of Lipid Science and Technology, 2017, 119(2), 1500549.
Vanni, S. Intracellular Lipid Droplets: From Structure to Function. Lipid Insights, 2017, 10, 117863531774551.
Walther, T. C., Farese, R. V. Lipid Droplets and Cellular Lipid Metabolism. Annual Review of Biochemistry, 2012, 81(1), 687–714.
Wolfer, T. L., Acevedo, N. C., Prusa, K. J., Sebranek, J. G., Tarté, R. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat science, 2018, 145, 352-362.
Yilmaz, M. T., Karaman, S., Dogan, M., Yetim, H., Kayacier, A. Characterization of O/W model system meat emulsions using shear creep and creep recovery tests based on mechanical simulation models and their correlation with texture profile analysis (TPA) parameters. Journal of Food Engineering, 2012, 108(2), 327-336.
Youssef, M. K., Barbut, S. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Science, 2011, 87(4), 356-360.
Zetzl, A. K., Marangoni, A. G. Structured oils and fats (organogels) as food ingredient and nutraceutical delivery systems. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, 2012, (pp. 392-411). Woodhead Publishing.
Zetzl, A. K., Marangoni, A. G., Barbut, S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Function, 2012, 3(3), 327-337.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78236-
dc.description.abstract隨著動物保護、環境保護及健康意識逐漸抬頭,植物肉已經成為極具潛力的新穎食品。植物肉主要由蛋白質、油及水組成,其他成份包含充填劑、著色劑、香料等。市面上大多植物肉產品中的油脂通常以乳化狀態存在,然而實際上的畜肉有「肥肉」、「油」及「瘦肉」之分。本研究針對研發植物肉產品的「脂肪」,為了同時具備肥肉的外觀、口感及質地,實驗分成「肥肉」及「油」兩部份,並以豬背脂 (pork back fat) 為模擬目標。「肥肉」部份,使用可可脂及椰子油,並以熱穩定的海藻酸鈣凝膠作為植物性肥肉主體,以硬度為指標,使用反應曲面法 (Response surface methodology, RSM) 建立模型、優化凝膠配方,並進一步分析膠體的鬆弛模量 (Relaxation modulus)。結果顯示以26.36%油、3.32%卵磷脂、3.56%海藻酸鈉、0.64%碳酸鈣及2.32%葡萄糖酸內酯之凝膠硬度與豬背脂硬度無顯著差異(p>0.05),接著以此配方做五次驗證試驗,證實模型的正確性。另外,膠體在7℃時比豬背脂更偏向黏彈性固體;常溫下壓縮8%形變量、維持30分鐘依然穩定不破裂,可確保在後續加工過程的穩定性。在油的部份,則利用15%~25%的卵磷脂作為油脂結構劑 (Fat structurant),加入微量的水 (0.1~1.8%),結構化常溫液態之芥花油 (Canola oil),成功提升芥花油熔點至65℃以上,在25℃呈現橡膠態的油膠 (Oleogel),可模擬常溫不具流動性的豬油,高溫烹調則熔化溢出。綜合上述,本研究成功利用純植物性原料 (Plant-based) 研發具豬背脂質地之肥肉,及巨觀性質近似豬油的油膠,後續可進一步與組織化蛋白質 (Textured vegetable protein, TVP) 混合,開發出具有肥肉紋路的植物肉。zh_TW
dc.description.abstractBecause of the universal value such as animal welfare, environment protection, and healthy life, plant-based meat has become a novel food. In the plant meat, the major ingredients include water, protein, oil, binding agent and colorant. Oil in most of the plant-based meat products exists as emulsion. However, there are “oil”, “fat” and “lean meat” in real meat. In order to simulate the appearance, mouthfeel and the texture of the fat and oil in the real meat, we divided the experiment into two parts, one was to simulate the “fat” and the other was for “oil”. For fat, the hardness of pork back fat was used as the target. We used calcium alginate, a temperature independent gel to provide the three-dimensional structure of the “fat”. The response surface methodology (RSM) was used to establish the model and optimize the formulation. The viscoelastic property of the “fat” was also analyzed using relaxation modulus. The results indicated that the optimal formulation for the “fat” was 26.36% oil, 3.32% lecithin, 3.56% sodium alginate, 0.64% calcium carbonate and 2.32 %glucono-δ-lactone (GDL). And the hardness of this plant- based “fat” was not significantly different (p>0.05) from pork back fat. However, the “fat” was more elastic than the pork back fat at 7℃ and more stable under 8% strain for 30 minutes at 25℃, which indicated the “fat” might be more resilient during the following processing. In the part of “oil”, we investigated lecithin oleogel to simulate lard. Canola oil was structured by 15%~25% lecithin with micro amount of water (0.1~0.8%). The result showed that the melting points of all the prepared oleogels were above 65℃ and existed in rubbery state in the room temperature, showing the similar macroscopic properties with lard. In conclusion, we successfully used plant-based materials to develop the plant-based fat and oil. The “fat” had the similar hardness as pork back fat and the oleogel had similar macroscopic properties of lard. These plant-based fat and oil products can be further mixed with textured vegetable protein (TVP) to manufacture plant-based ground meat.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:47:12Z (GMT). No. of bitstreams: 1
U0001-1308202013515700.pdf: 4109657 bytes, checksum: a026201f000ff8237416a97d0c0b8860 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 x
壹、前言 1
貳、文獻整理 3
一、動物的脂肪組織 3
(一) 簡介 3
(二) 大理石花紋 (Marbling) 4
(三) 動物性油脂 5
二、食物的質地 6
(一) 簡介 6
(二) 肉類的質地 9
(三) 全質地分析 (Texture profile analysis, TPA) 9
三、流變學 (Rheology) 11
(一) 簡介 11
(二) 食物的流變性質 12
(三) 膠體的流變 13
(四) 固體、流體及黏彈性體 14
(五) 複數模量 (Complex modulus, G*) 17
(六) 應力鬆弛 (Stress relaxation modulus, E(t)) 18
(七) 黏彈性模型 19
四、海藻酸 (Alginate) 21
(一) 介紹 21
(二) 凝膠條件 22
(三) 外部凝膠vs.內部凝膠 23
(四) 乳化凝膠 26
(五) 影響海藻酸鈣乳化凝膠之變因 26
五、有機凝膠 (Organogel) 31
(一) 簡介 31
(二) 油脂結構劑 31
(三) 有機凝膠形成機制 32
六、卵磷脂 35
(一) 簡介 35
(二) 物化特性與結構 35
七、卵磷脂與水的油凝膠系統 37
(一) 機制 37
(二) 凝膠條件 38
(三) 有機相對膠體物理性質的影響 40
參、研究目的與構想 41
肆、實驗架構 42
伍、實驗材料與方法 43
一、實驗材料 43
二、儀器設備 44
三、實驗方法 45
(一) 海藻酸鈣乳化凝膠製作 45
(二) 卵磷脂油凝膠製備 46
(三) 反應曲面法 (Response surface methodology) 47
(四) 海藻酸鈣乳化凝膠之硬度測定 55
(五) 海藻酸鈣乳化凝膠之鬆弛模量 (Relaxation modulus) 55
(六) 油膠之彈性模量 (Storage modulus, G’) 及耗損模量 (Loss modulus, G”) 55
(七) 油膠熔點判定 56
(八) 油膠膠體強度測定 56
(九) 漢堡排製程 56
(十) 數據分析 57
陸、結果與討論 58
一、海藻酸鈣乳化凝膠 58
(一) 海藻酸鈉濃度、油濃度及卵磷脂濃度對膠體硬度之影響 58
(二) 兩變因對硬度的影響 66
(三) 方程式最佳點驗證 70
(四) 鬆弛模數測定 71
二、卵磷脂油膠 74
(一) 不同卵磷脂濃度和Wo結構化菜籽油之能力 74
(二) 流變性質分析 76
(三) Wo與油膠熔點之關係 81
(四) 膠體強度分析 82
三、混入組織化蛋白質 83
柒、結論 84
捌、參考文獻 85
dc.language.isozh-TW
dc.subject植物脂肪zh_TW
dc.subject鬆弛模量zh_TW
dc.subject卵磷脂zh_TW
dc.subject反應曲面法zh_TW
dc.subject植物肉zh_TW
dc.subject海藻酸鈣zh_TW
dc.subject油膠zh_TW
dc.subjectoleogelen
dc.subjectlecithinen
dc.subjectrelaxation modulusen
dc.subjectresponse surface methodology (RSM)en
dc.subjectcalcium alginateen
dc.subjectplant faten
dc.subjectplant-based meaten
dc.title植物性脂肪之製備及流變性質zh_TW
dc.titlePreparation and rheological properties of plant-based faten
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor許庭禎(Tin-Chen Hsu)
dc.contributor.oralexamcommittee葉安義(An-I Yeh),陳時欣(Shih-Hsin Chen),陳政雄(Shaun Chen)
dc.subject.keyword植物肉,植物脂肪,海藻酸鈣,反應曲面法,鬆弛模量,卵磷脂,油膠,zh_TW
dc.subject.keywordplant-based meat,plant fat,calcium alginate,response surface methodology (RSM),relaxation modulus,oleogel,lecithin,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202003238
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2025-08-18-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202013515700.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved