Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢
dc.contributor.authorYu-Ching Changen
dc.contributor.author張友競zh_TW
dc.date.accessioned2021-07-11T14:46:17Z-
dc.date.available2021-07-22
dc.date.copyright2016-07-22
dc.date.issued2016
dc.date.submitted2016-07-06
dc.identifier.citation[1] 黃志誠、張學明.“神奇的熱電材料—利用溫差的熱電發電技術.” (2004):14
[2] 朱旭山. '熱電材料與元件之原理與應用.' (2005): 93.
[3] Caillat, T., etc,“Zn-Sb alloys for thermoelectric power generation”, Energy Conversion Engineering Conference, IECEC 96., Proceedings of the 31st Intersociety , Vol. 2, pp.905-909 (1996).
[4] Thomson, William. '4. On a Mechanical Theory of Thermo-Electric Currents.'Proceedings of the Royal Society of Edinburgh 3 (1857): 91-98.
[5] Goldsmid, H. J., and R. W. Douglas. 'The use of semiconductors in thermoelectric refrigeration.' British Journal of Applied Physics 5.11 (1954): 386.
[6] Nature materials, 7 (2008) 105-114
[7] 工業材料,第286期,第131-139頁
[8] Nolas, G. S., et al. 'The next generation of thermoelectric materials.'Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on. IEEE, 1998.
[9] 中央研究院週報 第1169期
[10] Ur, Soon-Chul, Philip Nash, and Il-Ho Kim. 'Solid-state syntheses and properties of Zn 4 Sb 3 thermoelectric materials.' Journal of alloys and compounds 361.1 (2003): 84-91.
[11] N.K. Dutta, Applied Physics Letters, pp. 1219-1220 (1997)
[12] A. Borshchevsky, D. T. Morelli, G. P. Meisner, J. P. Fleurial, T. Caillat, NASA Tech Brief, NPO-19909, 25(6), 2001.
[13] Mayer, H. W., I. Mikhail, and K. Schubert. 'Über einige phasen der Mischungen ZnSbN und CdSbN.' Journal of the Less Common Metals 59.1 (1978): 43-52.
[14] 李雅明,固態電子學
[15] Androulakis, John, et al. 'Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag (Pb1–ySny) mSbTe2+ m.' Advanced Materials 18.9 (2006): 1170-1173.
[16] 莊東漢,”熱電模組接合技術及其挑戰”,工業材料雜誌322期
[17] R. Zybala, K.T. Wojciechowski, M. Schmidt and R. Mania, Materialy Ceramiczne/Ceramic Materials, Vol. 62, p.481-485(2010).
[18] Sano, Seijiro, Hiroyuki Mizukami, and Hiromasa Kaibe. 'Development of high-efficiency thermoelectric power generation system.' Komai’su technical report 49.152 (2003).
[19] Rowe, David Michael, ed. CRC handbook of thermoelectrics. CRC press, 1995.
[20] 葉建弦,固態熱電材料在廢熱回收領域之應用
[21] Snyder, G. Jeffrey, et al. 'Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties.' Nature materials 3.7 (2004): 458-463.
[22] Lin, Wen P., Daniel E. Wesolowski, and Chin C. Lee. 'Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules.' Journal of Materials Science: Materials in Electronics 22.9 (2011): 1313-1320.
[23] 莊東漢(1999) “擴散軟銲技術在電子封裝之應用”,電子月刊,5 (11),118-125.
[24] Jacobson, D. M., and G. Humpston. 'Diffusion soldering.' Soldering & Surface Mount Technology 4.1 (1992): 27-32.
[25] 李冠廷. 'Zn4Sb3 中溫熱電材料與銅電極之薄膜固液擴散接合研究.' 臺灣大學材料科學與工程學研究所學位論文 (2013): 1-78.
[26] Wittmer, Marc. 'Properties and microelectronic applications of thin films of refractory metal nitrides.' Journal of Vacuum Science & Technology A 3.4 (1985): 1797-1803.
[27] Holloway, Karen, and Peter M. Fryer. 'Tantalum as a diffusion barrier between copper and silicon.' Applied Physics Letters 57.17 (1990): 1736-1738.
[28] Rossnagel, S. M., et al. 'Thin, high atomic weight refractory film deposition for diffusion barrier, adhesion layer, and seed layer applications.' Journal of Vacuum Science & Technology B 14.3 (1996): 1819-1827.
[29] Lan, Y. C., et al. 'Diffusion of nickel and tin in p-type (Bi, Sb) 2Te3 and n-type Bi2 (Te, Se) 3 thermoelectric materials.' Applied Physics Letters 92.10 (2008): 101910-101910.
[30] Wada, H., K. Takahashi, and T. Nishizaka. 'Electroless nickel plating to Bi-Te sintered alloy and its properties.' Journal of Materials Science Letters 9.7 (1990): 810-812.
[31] R. M. Redstall and Studd, in CRC Handbook of Thermoelectrics,edited by D.M. Rowe(CRC, Boca Raton, FL, 1995), pp. 641-643.
[32] Cui, J. L., et al. 'Preparation, thermoelectric properties and interface analysis of n-type graded material FeSi 2/Bi 2 Te 3.' Materials Science and Engineering: B 94.2 (2002): 223-228.
[33] Bierschenk, James L., Richard A. Howarth, and Norbert J. Socolowski. 'Thermal stress resistance joints solder containing tin, silver and indium or cadmium.' U.S. Patent No. 5,441,576. 15 Aug. 1995.
[34] Sato, Takehiko, and Kazuo Kamada. 'Thermoelectric piece and process of making the same.' U.S. Patent No. 6,083,770. 4 Jul. 2000.
[35] Zhao, Degang, et al. 'Interfacial evolution behavior and reliability evaluation of CoSb 3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging.'Journal of Alloys and Compounds 477.1 (2009): 425-431.
[36] Li, Xiaoya, et al. 'Mo/Ti/CoSb 3 joining technology for CoSb 3 based materials.' Thermoelectrics, 2005. ICT 2005. 24th International Conference on. IEEE, 2005.
[37] Zhao, Degang, Haoran Geng, and Xinying Teng. 'Fabrication and reliability evaluation of CoSb 3/W–Cu thermoelectric element.' Journal of Alloys and Compounds 517 (2012): 198-203.
[38] W. Klement, R. H. Willens, and P. Duwez, 'Non-Crystalline Structure in Solidified Gold-Silicon Alloys,' Nature , 187, 869–870 (1960).
[39] 薛承輝, 金屬玻璃之發展與應用. 臺大校友雙月刊, 2015. 98: p. 8-11.
[40] Wang, Chih-Wei, et al. 'Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon.' Journal of Materials Science 50.5 (2015): 2085-2092.
[41] Bower, Robert W. 'Characteristics of aluminum‐titanium electrical contacts on silicon.' Applied Physics Letters 23.2 (1973): 99-101.
[42] Ting, C. Y., and M. Wittmer. 'The use of titanium-based contact barrier layers in silicon technology.' Thin Solid Films 96.4 (1982): 327-345.
[43] Tsukimoto, S., et al. 'Formation of Ti diffusion barrier layers in thin Cu (Ti) alloy films.' Journal of electronic materials 34.5 (2005): 592-599.
[44] Olowolafe, J. O., M. A. Nicolet, and J. W. Mayer. 'Chromium thin film as a barrier to the interaction of Pd 2 Si with Al.' Solid-State Electronics 20.5 (1977): 413-415.
[45] Vassilev, George Penev, Tomas Gomez-Acebo, and Jean-Claude Tedenac. 'Thermodynamic optimization of the Ni-Zn system.' Journal of phase equilibria 21.3 (2000): 287-301.
[46] S,Budurov, G. Vassilev, and N. Kuck:Z. Metallkd., 1978, Vol. 68, pp.226.
[47] J. Schramm: Z. Metallkd., 1938, Vol. 30, pp. 122.
[48] F. Lihl: Z. Metallkd., 1952, Vol. 43, pp. 310.
[49] F. Lihl: Z. Metallkd., 1955, Vol. 46, pp. 438.
[50] A. Malaruka and V. Melihov: Proc. Nucl. Phys. Inst., Akad. Nauk Kazakh. SSR, 1969, Vol. 9, pp. 78.
[51] A. Morton: Phys. Status Solidi, 1977, Vol. 44 (1), pp. 205.
[52] G. Nover and K. Schubert: J. Less-Common Met., Vol. 75, 1980, pp. 51.
[53] W. Eckman: Z. Phys. Chem., 1931, vol. B12, pp. 57.
[54] Wang, Chao-hong, Hsien-hsin Chen, and Po-yi Li. 'Interfacial reactions of high-temperature Zn–Sn solders with Ni substrate.' Materials Chemistry and Physics 136.2 (2012): 325-333.
[55] Chan, Y. C., M. Y. Chiu, and T. H. Chuang. 'Intermetallic compounds formed during the soldering reactions of eutectic Sn-9Zn with Cu and Ni substrates.' Zeitschrift für Metallkunde 93.2 (2002): 95-98.
[56] Chou, Chin-yi, Sinn-wen Chen, and Yee-shyi Chang. 'Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples.' Journal of materials research 21.07 (2006): 1849-1856.
[57] Bader, W. G. 'Dissolution and Formation of Intermetallics in the Soldering Process, Paper from Physical Metallurgy of Metal Joining, Proceedings of AIME Symposium, St Louis, MO, October 16-17, 1980.' AIME Papers (1980): 257-268.
[58] VanBeek, A., A. Stolk, and J. J. VanLoo. 'Multiphase Diffusion in the Systems Fe--Sn and Ni--Sn.' Zeitschrift fur Metallkunde 73.7 (1982): 439-444.
[59] Ho, C. E., et al. 'Effects of limited Cu supply on soldering reactions between SnAgCu and Ni.' Journal of electronic materials 35.5 (2006): 1017-1024.
[60] Blair, Howard D., Tsung-Yu Pan, and John M. Nicholson. 'Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders [PWBs].' Electronic Components & Technology Conference, 1998. 48th IEEE. IEEE, 1998.
[61] Lee, Chwan-Ying, and Kwang-Lung Lin. 'The interaction kinetics and compound formation between electroless Ni-P and solder.' Thin Solid Films 249.2 (1994): 201-206.
[62] Lin, Kwang-Lung, and Chun-Jen Chen. 'The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment.' Journal of Materials Science: Materials in Electronics 7.6 (1996): 397-401.
[63] Harris, Paul G., and Kaldev S. Chaggar. 'The role of intermetallic compounds in lead-free soldering.' Soldering & surface mount technology 10.3 (1998): 38-52.
[64] Tu, K. N., & Thompson, R. D. (1982). Kinetics of interfacial reaction in bimetallic Cu-Sn thin films. Acta Metallurgica, 30(5), 947-952.
[65] Tu, K. N. 'Interdiffusion and reaction in bimetallic Cu-Sn thin films.' Acta Metallurgica 21.4 (1973): 347-354.
[66] Bartels, F., et al. 'Intermetallic phase formation in thin solid-liquid diffusion couples.' Journal of electronic materials 23.8 (1994): 787-790.
[67] Humpston, G., D. M. Jacobson, and S. P. S. Sangha. 'Diffusion soldering for electronics manufacturing.' Endeavour 18.2 (1994): 55-60.
[68] Marinković, Ž., and V. Simić. 'Kinetics of reaction at room temperature in thin silver-metal couples.' Thin Solid Films 195.1 (1991): 127-136.
[69] Li, J. F., P. A. Agyakwa, and C. M. Johnson. 'Kinetics of Ag 3 Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process.' Acta Materialia 58.9 (2010): 3429-3443.
[70] Li, J. F., et al. 'Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects.' Acta materialia 54.11 (2006): 2907-2922.
[71] Li, J. F., et al. 'Comparison of interfacial reactions of Ni and Ni–P in extended contact with liquid Sn–Bi-based solders.' Acta materialia 55.2 (2007): 737-752.
[72] H. Nowotny and J. Pesl, Monatsh. Chem., 82, 336-343 (1951) in German.
[73] J.D. Donaldson, A. Kjekshus, D.G. Nicholson, and F. Rakke, J. Less-Common Met., 41, 255-263 (1975).
[74] M. Hansen. “Binary Alloy Phase Diagrams.” Vol.4 (1986): 2017-2023.
[75] Kawaharada, Yoshiyuki, et al. 'Thermoelectric properties of CoSb 3.' Journal of alloys and compounds 315.1 (2001): 193-197.
[76] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Recent developments in thermoelectric materials, Int. Mater. Rev. 48 (1) (2003) 45–66.
[77] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2008) 105–114.
[78] A. Harnwunggmoung, K. Kurosaki, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Thermoelectric properties of Ga-added CoSb3 based skutterudites, J. Appl. Phys. 110 (2011) 013521.
[79] Y. Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J.R. Salvador, J.Y. Cho, J. Yang, Y.-C. Chien, S.-W. Chen, Y. Tang, G.J. Snyder, Charge-compensated compound defects in Ga-containing thermoelectric skutterudites, Adv. Funct. Mater. 23(2013) 3194–3203.
[80] Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.-M. Tseng, S.-W. Chen, G.J.
Snyder, Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites, Energy Environ. Sci. 7 (2014) 812–819.
[81] Chen, Wei-an, et al. 'Interfacial reactions in Ni/CoSb 3 couples at 450° C.'Journal of Alloys and Compounds 632 (2015): 500-504.
[82] N.L. Peterson, Self-diffusion in pure metals, J. Nucl. Mater. 69–70 (1978) 3–37.
[83] K.I. Hirano, R.P. Agarwala, B.L. Averbach, M. Cohen, Diffusion in Cobalt–Nickel
alloys, J. Appl. Phys. 33 (10) (1962) 3049–3053.
[84] R. Hahnel, W. Miekeley, H. Wever, Diffusion studies on the B8 phase of the Ni/Sb system, Phys. Status Solidi (a) 97 (1) (1986) 181–190.
[85] Okamoto, H. 'Ni-Sn (nickel-tin).' Journal of Phase Equilibria and Diffusion 29.3 (2008): 297-298.
[86] Karakaya, I., and W. T. Thompson. 'The Ag-Sn (silver-tin) system.' Bulletin of Alloy Phase Diagrams 8.4 (1987): 340-347.
[87] 鄭信民, et al. 'X 光繞射應用簡介.' 工業材料雜誌, 工研院材料所微結構分析實驗室 (2002).
[88] 楊忠霖. '熱電材料與銅電極之固液擴散接合研究.' 臺灣大學材料科學與工程學研究所學位論文 (2013): 1-193.
[89] Ohtsuki, Madoka, et al. 'Tungsten-based metallic glasses with high crystallization temperature, high modulus and high hardness.' Materials transactions 46.1 (2005): 48-53.
[90] 葉威廷. '固液擴散接合製作熱電模組之界面反應及其電性之研究.' 臺灣大學材料科學與工程學研究所學位論文 (2014)
[91] Chang, Jen-Chun, et al. 'Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses.' Thin Solid Films 584 (2015): 253-256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78214-
dc.description.abstract熱電材料是近年來興起的一種乾淨綠色能源,能將熱能與電能互相轉換,然而單一熱電材料之熱電轉換效率有限,因此工業上以P型和N型交互串聯做成的熱電模組應用最具優勢,而傳統熱電材料與電極間的接合方式常以軟銲或硬焊為主,由於熱電材料需在高溫環境下操作,因此軟銲及硬焊皆有其不適用之地方,為了克服傳統接合的缺失,本研究選用中高溫熱電材料Zn4Sb3、CoSb3為母材、Cu為電極,先以Ni作為擴散阻隔層,Ag、Sn分別作為高熔點及低熔點金屬進行固液擴散接合,且在不同時間及溫度的接合參數下,進行界面微結構分析、接合強度測試以及破斷面分析。
實驗結果顯示,CoSb3預鍍錫後強度皆能提升到10 MPa以上,Zn4Sb3則是不需預鍍錫就能有25 MPa左右的強度,但於長時間的反應下,熱電材料Zn4Sb3可大量地提供Zn使得γNi5Zn21不斷增厚直到Ni被完全消耗殆盡,CoSb3亦是如此,顯示兩種熱電材料皆會有Ni擴散阻障層被消耗進而無法阻擋各層金屬原子間的互相擴散,最終導致整體元件的破裂與失效。因此嘗試利用濺鍍金屬Ti薄膜或金屬玻璃的方式來取代,發現以金屬玻璃Zr53Ni30Cu9Al8不論接合時間多長,與Zn4Sb3形成的IMC layer就只維持約10 um;而濺鍍上Ti作為buffer layer後,再鍍上WTi膜,實驗發現將有助於改善先前因熱膨差異、附著性不佳及連續性不足等問題,且亦能成功擋住Zn的擴散。
zh_TW
dc.description.abstractIn the recent years, thermoelectric(TE) materials are a very competitive renewable energy. They can generate an electric potential while in a temperature gradient. In order to enhance the conversion efficiency, thermoelectric devices are usually composed of arrays of modules made by P-type and N-type thermoelectric materials in industrial. And, there are numerous solder or braze joints connecting these arrays of modules in thermoelectric devices conventionally. However, traditional soldering bonding is not suitable for operating in high temperature. We choose Zn4Sb3 and CoSb3 for mid-high temperatured TE materials, copper for electrode, silver for high melting point metal and tin for low melting point metal. After the SLID bonding procedure, we will process a series of analysis on interfacial morphology, shear strength test and fracture surface observation in various bonding temperature and time.
The results show that the shear strength can be up to 10 MPa when the CoSb3 was pre-coated with tin layer and heated before SLID bonding. However, the shear strength of Zn4Sb3 is approximately 25 MPa without pre-coated with tin layer. To prevent direct contact and interfacial reactions between solders or brazes and thermoelectric materials, nickel is often used as the barrier layer. However, in long-term reaction, Zn4Sb3 can sufficiently offer Zn to form γNi5Zn21 until nickel is completely consumed. It might
cause the device failure in someday. So, nickle is not suitable for being the diffusion barrier anymore. Therefore, we tried to use sputtering Ti or metallic glass thin film to replace the original nickle diffusion barrier. The results show that the thickness of IMC is only 10 um no matter how long the metallic glass Zr53Ni30Cu9Al8 bonding with Zn4Sb3. On the other hand, the problem of thermal residual stress and poor adherence can be solved when we sputter Ti as buffer layer before WTi layer. And, this double barrier layer also successfully blocks the diffusion of zinc into high melting metal.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:46:17Z (GMT). No. of bitstreams: 1
ntu-105-R03527046-1.pdf: 6205298 bytes, checksum: 13e6fef73bd90f68f1403180ecd3f700 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
圖目錄 VI
表目錄 X
第一章、前言 1
第二章、理論及文獻回顧 4
2.1 熱電材料之發展 4
2.1.1 Seebeck Effect 4
2.1.2 Peltier Effect 5
2.1.3 熱電優值 6
2.1.4 熱電模組 8
2.2 固液擴散接合製程 14
2.3 擴散阻障層 16
2.3.1 金屬玻璃 17
2.3.2 金屬薄膜 18
2.4 界面成長動力學 20
2.4.1界面控制反應 21
2.4.2擴散控制反應 21
2.5 文獻回顧 22
2.5.1 Ni-Zn界面反應 22
2.5.2 Ni-Sn界面反應 23
2.5.3 Cu-Sn界面反應 24
2.5.4 Ag-Sn界面反應 24
2.5.5 Sb-Ti界面反應 25
2.5.6 CoSb3-Ni 界面反應 25
第三章、實驗方法 30
3.1 實驗流程 30
3.2 試片前處理 30
3.3 熱電材料固液擴散接合製程 30
3.4 熱電材料與金屬玻璃之Diffusion Couple研究 31
3.5 熱電材料濺鍍金屬玻璃之研究 32
3.6 熱電材料濺鍍金屬薄膜之研究 32
3.7 界面分析、強度測試與薄膜分析 32
3.8 高溫時效 33
第四章、實驗結果與討論 46
4.1 CoSb3熱電材料固液擴散接合研究 46
4.1.1 CoSb3/Ni/Ag/Sn-Ag/Cu電極之固液擴散接合研究 (未預鍍Sn) 46
4.1.2 CoSb3/Sn/Ni/Ag/Sn-Ag/Cu電極之固液擴散接合研究 (預鍍Sn) 47
4.2 Zn4Sb3熱電材料擴散阻礙層研究 52
4.2.1 Zn4Sb3熱電材料固液擴散接合之Ni層大量消耗研究 52
4.2.2 Zn4Sb3熱電材料固液擴散接合之1000小時之時效研究 53
4.3 Zn4Sb3熱電材料與金屬玻璃Diffusion couple 研究 57
4.4 Zn4Sb3熱電材料與金屬玻璃濺鍍之研究 67
4.5 Zn4Sb3熱電材料與金屬薄膜濺鍍之研究 70
4.6 中鋼熱電模組分析之研究 80
第五章、結論 88
參考文獻 89
dc.language.isozh-TW
dc.subject熱電材料zh_TW
dc.subject固液擴散接合zh_TW
dc.subject界面反應zh_TW
dc.subject擴散阻障層zh_TW
dc.subject強度測試zh_TW
dc.subjectThermoelectric materialsen
dc.subjectDiffusion barrieren
dc.subjectInterfacial reactionen
dc.subjectSolid-Liquid interdiffusion bondingen
dc.subjectShear strength testen
dc.title中高溫熱電模組之擴散阻障層研究zh_TW
dc.titleDiffusion Barrier of Thermoelectric Modules Manufactured with Solid-Liquid Interdiffusion Bondingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛承輝,王彰盟,朱旭山,黃菁儀,陳勝吉
dc.subject.keyword熱電材料,擴散阻障層,固液擴散接合,界面反應,強度測試,zh_TW
dc.subject.keywordThermoelectric materials,Diffusion barrier,Interfacial reaction,Solid-Liquid interdiffusion bonding,Shear strength test,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201600727
dc.rights.note有償授權
dc.date.accepted2016-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03527046-1.pdf
  未授權公開取用
6.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved