請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7815
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈立言(Lee-Yan Sheen) | |
dc.contributor.author | Suraphan Panyod | en |
dc.contributor.author | 裴尤德 | zh_TW |
dc.date.accessioned | 2021-05-19T17:54:36Z | - |
dc.date.available | 2022-02-16 | |
dc.date.available | 2021-05-19T17:54:36Z | - |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-08 | |
dc.identifier.citation | Abu-Shanab, A., & Quigley, E. M. (2010). The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol, 7(12), 691-701.
Adachi, Y., Moore, L. E., Bradford, B. U., Gao, W., & Thurman, R. G. (1995). Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterol, 108(1), 218-224. Albano, E. (2002). Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radic Biol Med, 32(2), 110-114. Albano, E. (2006). Alcohol, oxidative stress and free radical damage. Proc Nutr Soc, 65(3), 278-290. Altamirano, J., & Bataller, R. (2011). Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol, 8(9), 491-501. Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. J Nutr, 131(3s), 955S-962S. Ankri, S., & Mirelman, D. (1999). Antimicrobial properties of allicin from garlic. Microbes Infect, 1(2), 125-129. Attia, M. N. T., & Aly, M. S. (2006). Hepatoprotective activity of allicin against carbon tetrachloride induced hepatic injury in rats. J Biol Sci, 6(3), 457-468. Augusti, K. T., & Mathew, P. T. (1975). Effect of allicin on certain enzymes of liver after a short term feeding to normal rats. Experientia, 31(2), 148-149. Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 101(44), 15718-15723. Bailey, S. M., & Cunningham, C. C. (1998). Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology, 28(5), 1318-1326. Bajaj, J. S., Heuman, D. M., Hylemon, P. B., Sanyal, A. J., White, M. B., Monteith, P., Noble, N. A., Unser, A. B., Daita, K., Fisher, A. R., Sikaroodi, M., & Gillevet, P. M. (2014). Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol, 60(5), 940-947. Bataller, R., & Brenner, D. A. (2001). Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis, 21(3), 437-451. Bradham, C. A., Plumpe, J., Manns, M. P., Brenner, D. A., & Trautwein, C. (1998). Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol, 275(3 Pt 1), G387-392. Bruck, R., Aeed, H., Brazovsky, E., Noor, T., & Hershkoviz, R. (2005). Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice. Liver Int, 25(3), 613-621. Brunt, E. M. (2007). Pathology of fatty liver disease. Mod Pathol, 20 Suppl 1, S40-48. Bull-Otterson, L., Feng, W., Kirpich, I., Wang, Y., Qin, X., Liu, Y., Gobejishvili, L., Joshi-Barve, S., Ayvaz, T., Petrosino, J., Kong, M., Barker, D., McClain, C., & Barve, S. (2013). Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One, 8(1), e53028. Cai, Y., Wang, R., Pei, F., & Liang, B. B. (2007). Antibacterial activity of allicin alone and in combination with beta-lactams against Staphylococcus spp. and Pseudomonas aeruginosa. J Antibiot (Tokyo), 60(5), 335-338. Canesso, M. C. C., Lacerda, N. L., Ferreira, C. M., Goncalves, J. L., Almeida, D., Gamba, C., Cassali, G., Pedroso, S., Moreira, C., Martins, F. S., Nicoli, J. R., Teixeira, M. M., Godard, A. L. B., & Vieira, A. T. (2014). Comparing the effects of acute alcohol consumption in germ-free and conventional mice: the role of the gut microbiota. BMC Microbiol, 14, 240. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5), 335-336. Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., & Gewirtz, A. T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519(7541), 92-96. Chu, Y. L., Ho, C. T., Chung, J. G., Raghu, R., Lo, Y. C., & Sheen, L. Y. (2013). Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy. J Agric Food Chem, 61(41), 9839-9848. Chu, Y. L., Ho, C. T., Chung, J. G., Rajasekaran, R., & Sheen, L. Y. (2012). Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells. J Agric Food Chem, 60(34), 8363-8371. Chung, L. Y. (2006). The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J Med Food, 9(2), 205-213. Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell, 148(6), 1258-1270. Cox, L. M., Yamanishi, S., Sohn, J., Alekseyenko, A. V., Leung, J. M., Cho, I., Kim, S. G., Li, H., Gao, Z., Mahana, D., Zarate Rodriguez, J. G., Rogers, A. B., Robine, N., Loke, P., & Blaser, M. J. (2014). Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 158(4), 705-721. Dey, A., & Cederbaum, A. I. (2006). Alcohol and oxidative liver injury. Hepatology, 43(2 Suppl 1), S63-74. Donohue, T. M., Jr. (2007). Alcohol-induced steatosis in liver cells. World J Gastroenterol, 13(37), 4974-4978. Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 10(10), 996-998. Endo, M., Masaki, T., Seike, M., & Yoshimatsu, H. (2007). TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood), 232(5), 614-621. Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 9(10), 577-589. Freeman, F., & Kodera, Y. (1995). Garlic Chemistry - Stability of S-(2-Propenyl) 2-Propene-1-Sulfinothioate (Allicin) in Blood, Solvents, and Simulated Physiological Fluids. J Agric Food Chem, 43(9), 2332-2338. Fukui, H., Brauner, B., Bode, J. C., & Bode, C. (1991). Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol, 12(2), 162-169. Gao, B., Seki, E., Brenner, D. A., Friedman, S., Cohen, J. I., Nagy, L., Szabo, G., & Zakhari, S. (2011). Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol, 300(4), G516-525. Gao, C., Jiang, X., Wang, H., Zhao, Z., & Wang, W. (2013). Drug metabolism and pharmacokinetics of organosulfur compounds from garlic. J Drug Metab Toxicol, 4(5). Garcovich, M., Zocco, M. A., Roccarina, D., Ponziani, F. R., & Gasbarrini, A. (2012). Prevention and treatment of hepatic encephalopathy: focusing on gut microbiota. World J Gastroenterol, 18(46), 6693-6700. Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol, 72(11), 1493-1505. Guilbert, J. J. (2003). The world health report 2002 - reducing risks, promoting healthy life. Educ Health (Abingdon), 16(2), 230. Harper, C. (1998). The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol, 57(2), 101-110. Harper, C. (2007). The neurotoxicity of alcohol. Hum Exp Toxicol, 26(3), 251-257. Harper, C. (2009). The neuropathology of alcohol-related brain damage. Alcohol Alcohol, 44(2), 136-140. Hartmann, P., Seebauer, C. T., & Schnabl, B. (2015). Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res, 39(5), 763-775. Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., Thaiss, C. A., Kau, A. L., Eisenbarth, S. C., Jurczak, M. J., Camporez, J. P., Shulman, G. I., Gordon, J. I., Hoffman, H. M., & Flavell, R. A. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482(7384), 179-185. Horiguchi, N., Wang, L., Mukhopadhyay, P., Park, O., Jeong, W. I., Lafdil, F., Osei-Hyiaman, D., Moh, A., Fu, X. Y., Pacher, P., Kunos, G., & Gao, B. (2008). Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterol, 134(4), 1148-1158. Ilic, D., Nikolic, V., Stankovic, M., Nikolic, L., Stanojevic, L., Mladenovic-Ranisavljevic, I., & Smelcerovic, A. (2012). Transformation of synthetic allicin: the influence of ultrasound, microwaves, different solvents and temperatures, and the products isolation. Sci World J, 2012, 561823. Ilic, D. P., Nikolic, V. D., Nikolic, L. B., Stankovic, M. Z., & Stanojevic, L. P. (2010). Thermal Degradation, Antioxidant and Antimicrobial Activity of the Synthesized Allicin and Allicin Incorporated in Gel. Hem Ind, 64(2), 85-91. Jarvelainen, H. A., Fang, C., Ingelman-Sundberg, M., & Lindros, K. O. (1999). Effect of chronic coadministration of endotoxin and ethanol on rat liver pathology and proinflammatory and anti-inflammatory cytokines. Hepatology, 29(5), 1503-1510. Jess, T. (2014). Microbiota, antibiotics, and obesity. N Engl J Med, 371(26), 2526-2528. Jiang, Z., Chen, C., Wang, J., Xie, W., Wang, M., Li, X., & Zhang, X. (2016). Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. J Nat Med, 70(1), 45-53. Kane, C. J., Phelan, K. D., Douglas, J. C., Wagoner, G., Johnson, J. W., Xu, J., & Drew, P. D. (2013). Effects of ethanol on immune response in the brain: region-specific changes in aged mice. J Neuroinflammation, 10, 66. Keshavarzian, A., Farhadi, A., Forsyth, C. B., Rangan, J., Jakate, S., Shaikh, M., Banan, A., & Fields, J. Z. (2009). Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol, 50(3), 538-547. Keshavarzian, A., Fields, J. Z., Vaeth, J., & Holmes, E. W. (1994). The differing effects of acute and chronic alcohol on gastric and intestinal permeability. Am J Gastroenterol, 89(12), 2205-2211. Kirpich, I. A., Solovieva, N. V., Leikhter, S. N., Shidakova, N. A., Lebedeva, O. V., Sidorov, P. I., Bazhukova, T. A., Soloviev, A. G., Barve, S. S., McClain, C. J., & Cave, M. (2008). Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol, 42(8), 675-682. Lai, Y. S., Chen, W. C., Ho, C. T., Lu, K. H., Lin, S. H., Tseng, H. C., Lin, S. Y., & Sheen, L. Y. (2014). Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem, 62(25), 5897-5906. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4), 357-359. Lawson, L. D., & Gardner, C. D. (2005). Composition, stability, and bioavailability of garlic products used in a clinical trial. J Agric Food Chem, 53(16), 6254-6261. Lefkowitch, J. H. (2005). Morphology of alcoholic liver disease. Clin Liver Dis, 9(1), 37-53. Leung, M. H., Wilkins, D., Li, E. K., Kong, F. K., & Lee, P. K. (2014). Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol, 80(21), 6760-6770. Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122), 1022-1023. Lieber, C. S., & DeCarli, L. M. (1989). Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol, 24(3), 197-211. Lieber, C. S., DeCarli, L. M., & Sorrell, M. F. (1989). Experimental methods of ethanol administration. Hepatology, 10(4), 501-510. Liu, C. T., Raghu, R., Lin, S. H., Wang, S. Y., Kuo, C. H., Tseng, Y. J., & Sheen, L. Y. (2013). Metabolomics of ginger essential oil against alcoholic fatty liver in mice. J Agric Food Chem, 61(46), 11231-11240. Lu, K. H., Tseng, H. C., Liu, C. T., Huang, C. J., Chyuan, J. H., & Sheen, L. Y. (2014). Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct, 5(5), 1027-1037. Mandrekar, P., & Szabo, G. (2009). Signalling pathways in alcohol-induced liver inflammation. J Hepatol, 50(6), 1258-1266. Marteau, P., Pochart, P., Dore, J., Bera-Maillet, C., Bernalier, A., & Corthier, G. (2001). Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol, 67(10), 4939-4942. Mathurin, P., Deng, Q. G., Keshavarzian, A., Choudhary, S., Holmes, E. W., & Tsukamoto, H. (2000). Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology, 32(5), 1008-1017. Meagher, E. A., Barry, O. P., Burke, A., Lucey, M. R., Lawson, J. A., Rokach, J., & FitzGerald, G. A. (1999). Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest, 104(6), 805-813. Miller, A. M., Horiguchi, N., Jeong, W. I., Radaeva, S., & Gao, B. (2011). Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res, 35(5), 787-793. Miller, A. M., Wang, H., Bertola, A., Park, O., Horiguchi, N., Ki, S. H., Yin, S., Lafdil, F., & Gao, B. (2011). Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice. Hepatology, 54(3), 846-856. Miller, K. L., Liebowitz, R. S., & Newby, L. K. (2004). Complementary and alternative medicine in cardiovascular disease: A review of biologically based approaches. American Heart Journal, 147(3), 401-411. Monje, M. L., Toda, H., & Palmer, T. D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science, 302(5651), 1760-1765. O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Rep, 7(7), 688-693. Perez-Giraldo, C., Cruz-Villalon, G., Sanchez-Silos, R., Martinez-Rubio, R., Blanco, M. T., & Gomez-Garcia, A. C. (2003). In vitro activity of allicin against Staphylococcus epidermidis and influence of subinhibitory concentrations on biofilm formation. J Appl Microbiol, 95(4), 709-711. Purohit, V., Bode, J. C., Bode, C., Brenner, D. A., Choudhry, M. A., Hamilton, F., Kang, Y. J., Keshavarzian, A., Rao, R., Sartor, R. B., Swanson, C., & Turner, J. R. (2008). Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol, 42(5), 349-361. Purohit, V., Gao, B., & Song, B. J. (2009). Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res, 33(2), 191-205. Qian, Y., & Fan, J. G. (2005). Obesity, fatty liver and liver cancer. Hepatobiliary Pancreat Dis Int, 4(2), 173-177. Qin, L., He, J., Hanes, R. N., Pluzarev, O., Hong, J. S., & Crews, F. T. (2008). Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation, 5, 10. Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., Knapp, D. J., & Crews, F. T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453-462. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 41(Database issue), D590-596. Quigley, E. M., & Monsour, H. P. (2013). The gut microbiota and the liver: implications for clinical practice. Expert Rev Gastroenterol Hepatol, 7(8), 723-732. Quigley, E. M., Stanton, C., & Murphy, E. F. (2013). The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol, 58(5), 1020-1027. Raghu, R., Liu, C. T., Tsai, M. H., Tang, X., Kalari, K. R., Subramanian, S., & Sheen, L. Y. (2012). Transcriptome analysis of garlic-induced hepatoprotection against alcoholic fatty liver. J Agric Food Chem, 60(44), 11104-11119. Rao, R. (2009). Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology, 50(2), 638-644. Rasineni, K., & Casey, C. A. (2012). Molecular mechanism of alcoholic fatty liver. Indian J Pharmacol, 44(3), 299-303. Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB J, 22(3), 659-661. Salaspuro, M. P., Shaw, S., Jayatilleke, E., Ross, W. A., & Lieber, C. S. (1981). Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons: metabolic consequences in vivo and in vitro. Hepatology, 1(1), 33-38. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol, 12(6), R60. Shadkchan, Y., Shemesh, E., Mirelman, D., Miron, T., Rabinkov, A., Wilchek, M., & Osherov, N. (2004). Efficacy of allicin, the reactive molecule of garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of disseminated aspergillosis. J Antimicrob Chemother, 53(5), 832-836. Sozio, M. S., Liangpunsakul, S., & Crabb, D. (2010). The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. Semin Liver Dis, 30(4), 378-390. Stanley, D., Geier, M. S., Chen, H., Hughes, R. J., & Moore, R. J. (2015). Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol, 15, 51. Stewart, S., Jones, D., & Day, C. P. (2001). Alcoholic liver disease: new insights into mechanisms and preventative strategies. Trends Mol Med, 7(9), 408-413. Svegliati-Baroni, G., Baraona, E., Rosman, A. S., & Lieber, C. S. (1994). Collagen-acetaldehyde adducts in alcoholic and nonalcoholic liver diseases. Hepatology, 20(1 Pt 1), 111-118. Szabo, G., & Bala, S. (2010). Alcoholic liver disease and the gut-liver axis. World J Gastroenterol, 16(11), 1321-1329. Targher, G., Day, C. P., & Bonora, E. (2010). Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med, 363(14), 1341-1350. Tilg, H., Moschen, A. R., & Kaneider, N. C. (2011). Pathways of liver injury in alcoholic liver disease. J Hepatol, 55(5), 1159-1161. Tsai, Y., Cole, L. L., Davis, L. E., Lockwood, S. J., Simmons, V., & Wild, G. C. (1985). Antiviral Properties of Garlic - Invitro Effects on Influenza B, Herpes-Simplex and Coxsackie-Viruses. Planta Medica, 51(5), 460-461. Varatharajalu, R., Garige, M., Leckey, L. C., Reyes-Gordillo, K., Shah, R., & Lakshman, M. R. (2016). Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers. Oxid Med Cell Longev, 2016, 5017460. Vidal, F., Perez, J., Morancho, J., Pinto, B., & Richart, C. (1990). Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease. Gut, 31(6), 707-711. Wang, H. J., Zakhari, S., & Jung, M. K. (2010). Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol, 16(11), 1304-1313. Wheeler, M. D. (2003). Endotoxin and Kupffer cell activation in alcoholic liver disease. Alcohol Res Health, 27(4), 300-306. World Health Organization. Management of Substance Abuse Team. (2011). Global status report on alcohol and health. Geneva, Switzerland: World Health Organization. Wu, W. K., Panyod, S., Ho, C. T., Kuo, C. H., Wu, M. S., & Sheen, L. Y. (2015). Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota. J Func Foods, 15, 408-417. Yamada, Y., & Azuma, K. (1977). Evaluation of the in vitro antifungal activity of allicin. Antimicrob Agents Chemother, 11(4), 743-749. Yan, A. W., Fouts, D. E., Brandl, J., Starkel, P., Torralba, M., Schott, E., Tsukamoto, H., Nelson, K. E., Brenner, D. A., & Schnabl, B. (2011). Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 53(1), 96-105. Yin, M., Gabele, E., Wheeler, M. D., Connor, H., Bradford, B. U., Dikalova, A., Rusyn, I., Mason, R., & Thurman, R. G. (2001). Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology, 34(5), 935-942. You, M., Considine, R. V., Leone, T. C., Kelly, D. P., & Crabb, D. W. (2005). Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology, 42(3), 568-577. You, M., & Crabb, D. W. (2004). Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol, 287(1), G1-6. Yu, S., Rao, S., & Reddy, J. K. (2003). Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr Mol Med, 3(6), 561-572. Zahr, N. M., Kaufman, K. L., & Harper, C. G. (2011). Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol, 7(5), 284-294. Zakhari, S., & Li, T. K. (2007). Determinants of alcohol use and abuse: Impact of quantity and frequency patterns on liver disease. Hepatology, 46(6), 2032-2039. Zhang, L., Wang, E., Chen, F., Yan, H., & Yuan, Y. (2013). Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct, 4(8), 1229-1236. Zhang, L., Zhang, H., Miao, Y., Wu, S., Ye, H., & Yuan, Y. (2012). Protective effect of allicin against acrylamide-induced hepatocyte damage in vitro and in vivo. Food Chem Toxicol, 50(9), 3306-3312. Zhang, Z. M., Zhong, N., Gao, H. Q., Zhang, S. Z., Wei, Y., Xin, H., Mei, X., Hou, H. S., Lin, X. Y., & Shi, Q. (2006). Inducing apoptosis and upregulation of Bax and Fas ligand expression by allicin in hepatocellular carcinoma in Balb/c nude mice. Chin Med J (Engl), 119(5), 422-425. Zhao, H. Y., Wang, H. J., Lu, Z., & Xu, S. Z. (2004). Intestinal microflora in patients with liver cirrhosis. Chin J Dig Dis, 5(2), 64-67. Zhu, Q., Gao, R., Wu, W., & Qin, H. (2013). The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol, 34(3), 1285-1300. Zubkova, E. V., & Robaire, B. (2004). Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat. Biol Reprod, 71(3), 1002-1008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7815 | - |
dc.description.abstract | 酗酒是造成酒精性脂肪肝的成因之一,並可能導致嚴重的肝臟疾病。近年來有研究顯示,腸道菌在肝臟疾病的致病及病程發展上扮演重要的角色,其機制可能包含對於菌相的直接影響,或因其副產物(例如:脂多醣)誘導發炎介質的釋出,造成體內系統性發炎及臟器的損壞,其中又以肝臟與腦部的影響最鉅。大蒜素(allicin)是新鮮大蒜萃取液中的有效成分,已有研究證實其具有抗菌、抗氧化、抗癌、降低血脂等功效。本研究的主要目的是探討大蒜素對於酒精性脂肪肝的護肝效果,及其對盲腸及糞便菌相所產生的影響,並進一步探討腸道菌相、肝臟及大腦間之交互影響。首先利用二烯丙基二硫化物(diallyl disulfide)及間氯過氧苯甲酸(m-chloroperbenzoic acid)進行反應,再經由開放式矽膠管柱及高效液相層析分析儀的純化,合成出純度高達95%且產率達3.86%的大蒜素。在動物模式中,給予C57BL/6雄性小鼠含有酒精的液態飼料(Lieber-DeCarli diet)誘導其酒精性脂肪肝的發生,並且以管餵方式每天給予大蒜素(5 or 20 mg/kg bw/day),四週以後進行犧牲取得其血液、臟器、尿液、糞便等檢體。分析結果顯示大蒜素可降低酒精性脂肪肝小鼠血漿中天門冬氨酸胺基轉移酶(AST)、丙胺酸轉胺酶(ALT)、肝臟重量與體重之相對重量、脂肪肝指數,以及肝臟中三酸甘油酯的堆積,並且提升其抗氧化相關因子的含量,例如:穀胱甘肽(GSH)、過氧化氫酶(CAT)、超氧化物歧化酶(SOD),同時降低肝臟微粒體細胞色素(CYP2E1)之表現量。此外大蒜素亦可抑制肝臟促發炎細胞激素如:腫瘤壞死因子α(TNF-α)、介白素1β(IL-1β)與介白素6(IL-6)之表現量,同時增進肝臟酒精脫氫酶(ADH)活性;以上結果顯示大蒜素可以減緩酒精誘導之肝臟氧化壓力及發炎現象。而由次世代基因定序結果顯示酒精與大蒜素之攝取會影響盲腸及糞便菌相多樣性,包括:數量及種類。整體而言,酒精傾向對於腸道菌造成不好的影響,但透過盲腸及糞便的分析結果顯示得知大蒜素可降低酒精引發肝臟三酸甘油酯升高之相關菌群;而正常飲食中介入大蒜素之組別和控制組相比,盲腸及糞便的菌相中 Lactobacillus sakei 顯著增加。在血漿中脂多醣(LPS)的含量分析,酒精攝取組之血漿 LPS 濃度顯著低於控制組,此結果顯示四週酒精的介入並未引起血液中 LPS 的濃度提升。此外酒精攝取組和控制組相比,其盲腸腸道菌相中格蘭氏陰性菌亦顯著較控制組低。在腸壁通透性方面,5 mg/kg bw/day 大蒜素的介入顯著改善因酒精引起的通透性改變。而在腸道菌─肝臟─腦部軸線,酒精攝取顯著地增加血漿及腦部中 TNF-α 濃度,而5 mg/kg bw/day 大蒜素的介入則顯著地降低此發炎現象。但由於酒精攝取組腸道菌中格蘭氏陰性菌及血漿 LPS 濃度和控制組相比均顯著降低,本研究推論酒精所造成之腦部發炎受到酒精本身的影響更勝於腸道格蘭氏陰性菌及血漿中LPS濃度改變。綜上所述,本研究之結論為大蒜素可能透過影響小鼠盲腸及糞便菌相而在酒精性脂肪肝疾病中具有肝臟保護之效果。 | zh_TW |
dc.description.abstract | Excessive alcohol consumption can cause alcoholic fatty liver disease (AFLD). Recently, the scientists have found that gut microbiota may play a role in the pathogenesis or progression of certain liver diseases, including alcoholic liver disease, either through the direct effects of bacteria or their by-products (lipopolysaccharides, LPS) by triggering inflammatory mediators such as tumor necrosis factor α (TNF-α). These inflammatory mediators can lead to systemic inflammation and organ damage, particularly to the liver and brain. Allicin is a pharmacologically active substance found in the fresh aqueous extract of garlic (Allium sativum, 大蒜, dasuan), which has been investigated for its antimicrobial, antioxidant, anticancer and hypolipidemic activity. The objectives of the study were to investigate (1) hepatoprotective effects of allicin against AFLD; (2) influence of allicin on cecal and fecal microbiota; and (3) interaction of gut microbiota, liver and brain in AFLD. Allicin was extracted from diallyl disulfide and m-chloroperbenzoic acid, followed by purification of the open column with silica gel and HPLC, and it achieved 95% purity and 3.86% yield. Male C57BL/6 mice were fed a control diet or an alcohol-containing liquid diet (Lieber-DeCarli diet). The mice were divided into 5 groups: (1) control diet, (2) control diet + allicin 20 mg/kg bw/day, (3) alcohol diet, (4) alcohol diet + allicin 5 mg/kg bw/day, and (5) alcohol diet 20 mg/kg bw/day. Allicin was orally administered daily to the AFLD mice for 4 weeks. The results indicated that allicin promoted hepatoprotection by significantly reducing aspartate transaminase (AST) and alanine transaminase (ALT) levels in the plasma, which are key indicators of liver damage. Allicin reduced fat accumulation, increased glutathione and catalase levels, and decreased microsomal protein cytochrome P450 2E1 (CYP2E1) expression in the livers of the AFLD mice. Furthermore, allicin supplementation significantly decreased the levels of hepatic pro-inflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 and suppressed the expression of sterol regulatory element-binding protein-1 (SREBP-1). Additionally, it improved the hepatic alcohol dehydrogenase (ADH) activity. Collectively, these findings demonstrate that allicin attenuated liver oxidative stress and inflammation. In addition, next-generation sequencing (NGS) base DNA sequencing results revealed that alcohol and allicin influenced gut microbiota diversification in both cecum and feces. The impact of alcohol and allicin on gut microbiota in cecum and feces varied in type, ratio, and abundance. Overall, alcohol tended to induce bad effect on the gut microbiota. Allicin exhibited inhibitory effect on the gut microbiota both in cecum and feces that correlated with alcohol consumption. Supplementation with allicin in the control diet mice was enriched with Lactobacillus sakei in cecum and feces compared to control mice. Plasma LPS levels in alcohol diet mice were significantly lower than the mice intake with the control diet. Thus, chronic alcohol consumption for 4 weeks did not increase the LPS level in the plasma. In addition, alcohol-fed mice have reduced the gram-negative bacteria in the cecum compared to the control mice. 5 mg of allicin supplementation preserved the intestinal permeability compared in AFLD mice. To study the gut microbiota-liver-brain interaction, the TNF-α in plasma and the brain were evaluated. The TNF-α level was increased in both plasma and the brain. 5 mg of allicin supplementation reduced the brain inflammation by decreasing the TNF-α level. Because gram-negative bacteria and plasma LPS level in the AFLD group was lower than the control. Therefore, this study concluded that the cause of brain inflammation greatly more influenced by ethanol consumption than the LPS that derived from the gram-negative bacteria in the gut. In conclusion, allicin exhibited hepatoprotective effect against AFLD and it might be related to fecal and cecal microbiota in mice. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:54:36Z (GMT). No. of bitstreams: 1 ntu-106-D01641008-1.pdf: 232931754 bytes, checksum: b9f33c1d2f63a094d80dea523c0685a4 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Acknowledgment I
Chinese Abstract III Abstract V Table of Contents VII List of Figure XII List of Table XIX 1. INTRODUCTION 1 2. LITERATURE REVIEW 5 2.1 Alcoholic fatty liver disease 5 2.2 Gut microbiota 10 2.3 Linear discriminant analysis (LDA) effect size (LEfSe) method 11 2.4 Endotoxins 12 2.5 Gut-liver-brain interaction 15 2.6 Brain inflammation 17 2.7 Metabolomics 19 2.8 Garlic and it composition 19 2.9 Allicin 20 3. HYPOTHESES, OBJECTIVES AND EXPERIMENTAL DESIGN 23 3.1 Background and problem 23 3.1.1 Alcoholic fatty liver disease 23 3.1.2 Gut microbiota 23 3.1.3 Gut-liver-brain interaction 23 3.2 Hypotheses 25 3.3 Objectives 26 3.4 Experimental design 27 3.4.1 Allicin synthesis, purification and identification 27 3.4.2 Animal experimental design 28 4. MATERIALS AND METHODS 29 4.1 Materials 29 4.1.1 Allicin synthesis and purification 29 4.1.2 Mass spectrometry analysis 29 4.2 Animal study 30 4.2.1 Alcoholic fatty liver disease mice model 30 4.2.2 Serum biochemical analysis 31 4.2.3 Glutathione, liver antioxidant enzyme, lipid peroxidation and alcohol dehydrogenase activity analysis 31 4.2.4 Liver, kidney, spleen, intestine, and brain biopsy examination 32 4.2.5 Liver inflammation analysis 32 4.2.6 Western blot analysis 32 4.2.7 Immunocytochemistry (IHC) of liver 33 4.3. Gut microbiota, intestinal permeability, endotoxin, cluster of differentiation 14 (CD14), and toll-like receptor 4 (TLR4) analysis 33 4.3.1 DNA extraction and next generation DNA sequencing 33 4.3.2 Endotoxin (lipopolysaccharide) assay 35 4.3.3 Fluorescein isothiocyanate (FITC)-dextran permeability assay 35 4.3.4 Cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) analysis 35 4.4 Statistical analysis 35 5. RESULTS 36 5.1 Allicin synthesis, purification, and identification 36 5.1.1 Open column with silica gel and thin layer chromatography 36 5.1.2 High-performance liquid chromatography for allicin purification 36 5.1.3 Identification molecular weight of allicin by mass spectroscopy 37 5.1.4 Effect of temperature and storage time on purity of allicin in carboxymethyl cellulose 37 5.2 Protective effect of allicin against fatty liver disease 37 5.2.1 Mice body weight and dietary intake 37 5.2.2 Plasma biochemical analysis 38 5.2.3 Relative liver weight 39 5.2.4 Liver triglyceride 39 5.2.5 Liver cholesterol 39 5.2.6 Histological analysis of liver and fatty liver score 40 5.2.7 Histological analysis of spleen and kidney 40 5.2.8 Liver lipid peroxidation 40 5.2.9 Glutathione and liver antioxidant enzyme activity 40 5.2.10 Liver inflammation analysis 41 5.2.11 Effect of allicin on expression of sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), signal transducer and activator of transcription 3 (STAT3), carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor- α (PPAR-α) 41 5.2.12 Hepatic microsomal protein cytochrome P450 2E1 (CYP2E1) protein expression 42 5.2.13 Alcohol dehydrogenase activity 42 5.3 Effect of allicin on gut microbiota, lipopolysaccharide, and intestinal permeability 42 5.3.1 Effect of alcohol and allicin on gut microbiota in cecum and feces 42 5.3.2 Correlation of gut microbiota, alcohol, allicin and liver triglyceride 44 5.3.2.1 Correlation of gut microbiota and allicin 44 5.3.2.2 Correlation of gut microbiota, alcohol, allicin and liver triglyceride 45 5.3.3 Using the Linear discriminant analysis Effect Size (LEfSe) method for analyzing the gut microbiota data 46 5.3.3.1 Comparison between cecal and fecal microbiota. 46 5.3.3.2 Comparison between cecal and fecal microbiota of control diet intake mice 47 5.3.3.3 Comparison between cecal and fecal microbiota of alcohol diet-fed mice 47 5.3.3.4 Comparison between cecal and fecal microbiota of control diet intake mice with allicin supplementation 47 5.3.3.5 Comparison between cecal and fecal microbiota of alcohol diet-fed mice with allicin supplementation 48 5.3.3.6 Comparison between cecal microbiota of control diet and alcohol diet-fed mice of cecal microbiota 48 5.3.3.7 Comparison between cecal microbiota of control diet and control diet intake mice with allicin supplementation (20 mg/kg bw) 48 5.3.3.8 Comparison between cecal microbiota of alcohol diet and alcohol diet-fed mice with allicin supplementation (5 mg/kg bw) 48 5.3.3.9 Comparison between cecal microbiota of alcohol diet and alcohol diet-fed mice with allicin supplementation (20 mg/kg bw) 49 5.3.3.10 Comparison between fecal microbiota of control diet and alcohol diet-fed mice 49 5.3.3.11 Comparison between fecal microbiota of control diet and control diet intake mice with allicin supplementation (20 mg/kg bw) 49 5.3.3.12 Comparison between fecal microbiota of alcohol diet and alcohol diet-fed mice with allicin supplementation (5 mg/kg bw) 49 5.3.3.13 Comparison between fecal microbiota of alcohol diet and alcohol diet-fed mice with allicin supplementation (20 mg/kg bw) 50 5.4 Gut microbiota-liver-brain interaction 50 5.4.1 Plasma endotoxin and its correlation with microbiota 50 5.4.2 Intestinal permeability 51 5.4.3 Hepatic cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) 51 5.4.4 Histological analysis of brain 52 5.4.5 Plasma and brain tumor necrosis factor α (TNF-α) 52 6. DISCUSSION 53 6.1 Allicin synthesis, stability, and dosage 53 6.2 Anti-fatty liver disease, anti-inflammation, anti-oxidation, and its mechanism 53 6.3 Comparison the cecal and fecal microbiota 56 6.4 Effect of alcohol and allicin on cecal and fecal microbiota 58 6.5 Gut microbiota and its correlation with alcohol and hepatic triglyceride 61 6.6 Gut microbiota-liver-brain interaction 62 7. FUTURE PLANS 67 8. REFERENCES 185 9. ABBREVIATION USED 196 10. PUBLICATIONS AND ACHIEVEMENT 197 11. BIOSKETCH (VITAE) OF THE AUTHOR 216 | |
dc.language.iso | en | |
dc.title | 探討大蒜素對於酒精性脂肪肝小鼠體內腸道菌相、肝臟及大腦間之交互影響 | zh_TW |
dc.title | Investigation of Allicin on Gut Microbiota-Liver-Brain Interaction in Mice with Alcoholic Fatty Liver Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳明賢(Ming-Shiang Wu),鍾景光(Jing-Gung Chung),李宗貴(Chong-Kuei Lii),邱亞伯(Albert Linton Charles),賴文崧(Wen-Sung Lai) | |
dc.subject.keyword | 酒精性脂肪肝,腸道菌相,脂多醣,腦部發炎,大蒜素, | zh_TW |
dc.subject.keyword | alcoholic fatty liver disease,gut microbiota,lipopolysaccharide,brain inflammation,allicin, | en |
dc.relation.page | 241 | |
dc.identifier.doi | 10.6342/NTU201700357 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-02-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 227.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。