Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳仁治(Jen-Chih Chen)
dc.contributor.authorTze-Jung Yehen
dc.contributor.author葉慈容zh_TW
dc.date.accessioned2021-07-11T14:36:20Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Lopez, C.V.G., et al., Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Bioresource Technology, 2009. 100(23): p. 5904-5910.
2. de Morais, M.G. and J.A. Costa, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol, 2007. 129(3): p. 439-45.
3. Chen, C.Y., et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 2011. 102(1): p. 71-81.
4. Chu, Y.J. and D.R. Corey, RNA Sequencing: Platform Selection, Experimental Design, and Data Interpretation. Nucleic Acid Therapeutics, 2012. 22(4): p. 271-274.
5. Li, Y., et al., RNA-Seq and Network Analysis Revealed Interacting Pathways in TGF-beta-Treated Lung Cancer Cell Lines. Cancer Inform, 2014. 13(Suppl 5): p. 129-40.
6. Kusko, R., et al., Comparison of Illumina and Ion Torrent RNA-Sequencing and Microarray-based approaches for Profiling the Transcriptome. Journal of Biomolecular Techniques : JBT, 2014. 25(Suppl): p. S14-S14.
7. Benes, V., J. Blake, and K. Doyle, Ribo-Zero Gold Kit: improved RNA-seq results after removal of cytoplasmic and mitochondrial ribosomal RNA. Nat Meth, 2011. 8(11).
8. Kim, K.M., et al., Applications of next-generation sequencing to unravelling the evolutionary history of algae. International Journal of Systematic and Evolutionary Microbiology, 2014. 64: p. 333-345.
9. Yao, L.N., et al., Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing. Bmc Bioinformatics, 2017. 18.
10. Yang, Z.K., et al., Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnology for Biofuels, 2013. 6.
11. Gao, Z.Q., et al., Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA). Plos One, 2015. 10(10).
12. Lelandais, G., et al., Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. Bmc Genomics, 2016. 17.
13. Yeh, T.J., et al., Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp reveals the molecular mechanisms for high lutein productivity. Algal Research-Biomass Biofuels and Bioproducts, 2017. 21: p. 103-119.
14. Astorg, P., Food carotenoids and cancer prevention: An overview of current research. Trends in Food Science & Technology, 1997. 8(12): p. 406-413.
15. Dwyer, J.H., et al., Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation, 2001. 103(24): p. 2922-7.
16. Chiu, C.J. and A. Taylor, Nutritional antioxidants and age-related cataract and maculopathy. Exp Eye Res, 2007. 84(2): p. 229-45.
17. Granado, F., B. Olmedilla, and I. Blanco, Nutritional and clinical relevance of lutein in human health. Br J Nutr, 2003. 90(3): p. 487-502.
18. Ceron, M.C., et al., Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem, 2008. 56(24): p. 11761-6.
19. Lin, J.H., D.J. Lee, and J.S. Chang, Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol, 2015. 184: p. 421-8.
20. Del Campo, J.A., et al., Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol, 2000. 76(1): p. 51-9.
21. Sanchez, J.F., et al., Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol, 2008. 79(5): p. 719-29.
22. Sanchez, J.F., et al., Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 2008. 43(4): p. 398-405.
23. Chan, M.C., et al., Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 2013. 78: p. 24-31.
24. Ho, S.H., et al., Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 2014. 152: p. 275-282.
25. Ho, S.H., et al., Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3. Bioresource Technology, 2015. 184: p. 131-138.
26. Xie, Y.P., et al., Phototrophic cultivation of a thermo-tolerant Desmodesmus sp for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 2013. 144: p. 435-444.
27. Del Campo, J.A., et al., Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 2004. 64(6): p. 848-854.
28. Shi, X.M., X.W. Zhang, and F. Chen, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 2000. 27(3-5): p. 312-318.
29. Sun, Z., et al., Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis, in Microalgae Biotechnology, C. Posten and S. Feng Chen, Editors. 2016, Springer International Publishing: Cham. p. 37-58.
30. DellaPenna, D. and B.J. Pogson, Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol, 2006. 57: p. 711-38.
31. Cazzonelli, C.I. and B.J. Pogson, Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010. 15(5): p. 266-74.
32. Kim, J. and D. DellaPenna, Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A, 2006. 103(9): p. 3474-9.
33. Britton, G., Overview of carotenoid biosynthesis, in Carotenoids: Biosynthesis and Metabolism. 1998, Birkhäuser: Basel: Switzerland. p. 13-147.
34. Takaichi, S. and M. Mochimaru, Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci, 2007. 64(19-20): p. 2607-19.
35. Takaichi, S., Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs, 2011. 9(6): p. 1101-18.
36. Lohr, M., C.S. Im, and A.R. Grossman, Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol, 2005. 138(1): p. 490-515.
37. DemmigAdams, B. and W.W. Adams, The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1996. 1(1): p. 21-26.
38. Demmig-Adams, B. and W.W. Adams, 3rd, Antioxidants in photosynthesis and human nutrition. Science, 2002. 298(5601): p. 2149-53.
39. Cazzonelli, C.I., Carotenoids in nature: insights from plants and beyond. Functional Plant Biology, 2011. 38(11): p. 833-847.
40. Liu, Z.F., et al., Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature, 2004. 428(6980): p. 287-292.
41. Pogson, B., et al., Arabidopsis Carotenoid Mutants Demonstrate That Lutein Is Not Essential for Photosynthesis in Higher Plants. The Plant Cell, 1996. 8(9): p. 1627-1639.
42. Dall'Osto, L., et al., Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. Bmc Plant Biology, 2006. 6.
43. Pogson, B.J., et al., Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(22): p. 13324-13329.
44. Niyogi, K.K., O. Bjorkman, and A.R. Grossman, The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(25): p. 14162-14167.
45. Frank, H.A. and R.J. Cogdell, Carotenoids in photosynthesis. Photochemistry and Photobiology, 1996. 63(3): p. 257-264.
46. Jahns, P. and A.R. Holzwarth, The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica Et Biophysica Acta-Bioenergetics, 2012. 1817(1): p. 182-193.
47. Lamers, P.P., et al., Carotenoid and Fatty Acid Metabolism in Light-Stressed Dunaliella salina. Biotechnology and Bioengineering, 2010. 106(4): p. 638-648.
48. Solovchenko, A.E., et al., Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russian Journal of Plant Physiology, 2008. 55(4): p. 455-462.
49. Geider, R.J., et al., Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. European Journal of Phycology, 1998. 33(4): p. 315-332.
50. Kim, S.H., et al., Effects of Light Intensity and Nitrogen Starvation on Glycerolipid, Glycerophospholipid, and Carotenoid Composition in Dunaliella tertiolecta Culture. Plos One, 2013. 8(9).
51. Stanier, R.Y., et al., Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev, 1971. 35(2): p. 171-205.
52. Chang, H.L., et al., Reactive oxygen species modulate the differential expression of methionine sulfoxide reductase genes in Chlamydomonas reinhardtii under high light illumination. Physiol Plant, 2014. 150(4): p. 550-64.
53. Ho, S.H., et al., Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technology, 2013. 143: p. 163-171.
54. Chu, H.T., et al., EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics, 2013. 29(8): p. 1004-10.
55. Huang, X. and A. Madan, CAP3: A DNA sequence assembly program. Genome Res, 1999. 9(9): p. 868-77.
56. Leng, N., et al., EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 2013. 29(8): p. 1035-1043.
57. Burge, S.W., et al., Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013. 41(Database issue): p. D226-32.
58. Conesa, A. and S. Gotz, Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008. 2008: p. 619832.
59. Conesa, A., et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005. 21(18): p. 3674-6.
60. Li, B. and C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinformatics, 2011. 12.
61. Chang, H.L., et al., Nitric Oxide Down-Regulation of Carotenoid Synthesis and PSII Activity in Relation to Very High Light-Induced Singlet Oxygen Production and Oxidative Stress in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2013. 54(8): p. 1296-1315.
62. Polle, J.E.W., K.K. Niyogi, and A. Melis, Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant and Cell Physiology, 2001. 42(5): p. 482-491.
63. Ho, S.H., C.Y. Chen, and J.S. Chang, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 2012. 113: p. 244-52.
64. Kessler, E., et al., Physiological, biochemical, and molecular characters for the taxonomy of the subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Botanica Acta, 1997. 110(3): p. 244-250.
65. An, S.S., T. Friedl, and E. Hegewald, Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons. Plant Biology, 1999. 1(4): p. 418-428.
66. van Hannen, E.J., P. Fink, and M. Lurling, A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. European Journal of Phycology, 2002. 37(2): p. 203-208.
67. Adamska, I., et al., Isolation of pigment-binding early light-inducible proteins from pea. European Journal of Biochemistry, 1999. 260(2): p. 453-460.
68. Ballottari, M., et al., Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes. Biochimica Et Biophysica Acta-Bioenergetics, 2012. 1817(1): p. 143-157.
69. Teramoto, H., T. Itoh, and T. Ono, High-intensity-light-dependent and transient expression of new genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2004. 45(9): p. 1221-1232.
70. Li, X.P., et al., A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 2000. 403(6768): p. 391-395.
71. Peers, G., et al., An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature, 2009. 462(7272): p. 518-U215.
72. Bishop, N.I., T. Urbig, and H. Senger, Complete separation of the beta,epsilon- and beta,beta-carotenoid biosynthetic pathways by a unique mutation of the lycopene cyclase in the green alga, Scenedesmus obliquus. FEBS Lett, 1995. 367(2): p. 158-62.
73. Chamovitz, D., G. Sandmann, and J. Hirschberg, Molecular and Biochemical-Characterization of Herbicide-Resistant Mutants of Cyanobacteria Reveals That Phytoene Desaturation Is a Rate-Limiting Step in Carotenoid Biosynthesis. Journal of Biological Chemistry, 1993. 268(23): p. 17348-17353.
74. Cunningham, F.X. and E. Gantt, Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1998. 49: p. 557-583.
75. Cunningham, F.X., et al., Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 1996. 8(9): p. 1613-1626.
76. Li, Z.R., et al., Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the Arabidopsis thaliana npq1 Mutant. Plant Cell, 2009. 21(6): p. 1798-1812.
77. Ruiz-Sola, M.A. and M. Rodriguez-Concepcion, Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 2012. 10: p. e0158.
78. Bishop, N.I., The beta,epsilon-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. Journal of Photochemistry and Photobiology B-Biology, 1996. 36(3): p. 279-283.
79. Heinze, I., et al., Assembly of light harvesting complexes II(LHC-II) in the absence of lutein - A study on the alpha-carotenoid-free mutant C-2A'-34 of the green alga Scenedesmus obliquus. Biochimica Et Biophysica Acta-Bioenergetics, 1997. 1320(2): p. 188-194.
80. Tukaj, Z., et al., Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Scenedesmus armatus. Plant Physiology and Biochemistry, 2003. 41(4): p. 337-344.
81. Lokstein, H., et al., Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochimica Et Biophysica Acta-Bioenergetics, 2002. 1553(3): p. 309-319.
82. Oster, U., et al., Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant Journal, 2000. 21(3): p. 305-310.
83. Bjorkman, O., et al., Photosynthetic adaptation to high temperatures: a field study in death valley, california. Science, 1972. 175(4023): p. 786-9.
84. Leong, T.Y. and J.M. Anderson, Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth Res, 1984. 5(2): p. 105-15.
85. Anderson, J.M., Photoregulation of the Composition, Function, and Structure of Thylakoid Membranes. Annual Review of Plant Physiology and Plant Molecular Biology, 1986. 37: p. 93-136.
86. Dietzel, L., K. Brautigam, and T. Pfannschmidt, Photosynthetic acclimation: State transitions and adjustment of photosystem stoichiometry - functional relationships between short-term and long-term light quality acclimation in plants. Febs Journal, 2008. 275(6): p. 1080-1088.
87. Rochaix, J.D., Regulation and Dynamics of the Light-Harvesting System. Annual Review of Plant Biology, Vol 65, 2014. 65: p. 287-309.
88. Pfannschmidt, T., J.F. Allen, and R. Oelmuller, Principles of redox control in photosynthesis gene expression. Physiologia Plantarum, 2001. 112(1): p. 1-9.
89. Fernandez, E. and A. Galvan, Nitrate assimilation in Chlamydomonas. Eukaryot Cell, 2008. 7(4): p. 555-9.
90. Plumley, F.G. and G.W. Schmidt, Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A, 1989. 86(8): p. 2678-82.
91. Grimm, B. and K. Kloppstech, The early light-inducible proteins of barley. Characterization of two families of 2-h-specific nuclear-coded chloroplast proteins. Eur J Biochem, 1987. 167(3): p. 493-9.
92. Grimm, B., E. Kruse, and K. Kloppstech, Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol, 1989. 13(5): p. 583-93.
93. Binyamin, L., et al., The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta, 2001. 212(4): p. 591-597.
94. Buchanan-Wollaston, V., et al., The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnology Journal, 2003. 1(1): p. 3-22.
95. Hutin, C., et al., Early light-induced proteins protect arabidopsis from photooxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(8): p. 4921-4926.
96. Niyogi, K.K. and T.B. Truong, Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 2013. 16(3): p. 307-314.
97. Juergens, M.T., et al., The Regulation of Photosynthetic Structure and Function during Nitrogen Deprivation in Chlamydomonas reinhardtii. Plant Physiology, 2015. 167(2): p. 558-U464.
98. Borowitzka, M.A., J.M. Huisman, and A. Osborn, Culture of the Astaxanthin-Producing Green-Alga Haematococcus-Pluvialis .1. Effects of Nutrients on Growth and Cell Type. Journal of Applied Phycology, 1991. 3(4): p. 295-304.
99. John, R.P., et al., Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 2011. 102(1): p. 186-193.
100. Ho, S.H., et al., Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnology Advances, 2011. 29(2): p. 189-198.
101. Ho, S.H., W.M. Chen, and J.S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 2010. 101(22): p. 8725-8730.
102. TransDecoder (Find Coding Regions Within Transcripts). Available from: https://transdecoder.github.io/.
103. Ramazanov, A. and Z. Ramazanov, Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research, 2006. 54(4): p. 255-259.
104. Stahl, U., et al., Cloning and functional characterization of a Phospholipid : Diacylglycerol acyltransferase from Arabidopsis. Plant Physiology, 2004. 135(3): p. 1324-1335.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77868-
dc.description.abstract全球暖化造成人類的生存危機,二氧化碳的大量排放也對氣候造成影響。為因應溫室效應的威脅,減少對石化能源的依賴,人類不停地思考各種不同的替代能源。因為微藻具有多樣性,而且是地球上生長最快的植物,所以被認為是捕獲二氧化碳的最有效和最環保的物種。第二代基因定序,也稱為次世代基因測序,始於2005年左右。在不同的時期,它提供了不同的技術和平台。藻類雖然是生質能源的料源之一,有些品種也以生產高單價健康食品聞名,但在研究上因為藻類基因資訊的缺乏,使得進展有限。在次世代基因定序開始發展之後,本論文便以次世代基因定序中的轉錄體開始,分析不同條件下藻類的生長。zh_TW
dc.description.abstractGlobal warming causes the crisis of human survival, and amount of carbon dioxide emission has a significant impact on the climate. In response to the threat of the greenhouse effect and reduce the dependence on the petrochemical energy, several kinds of alternative energy sources were considered by human. Microalgae are considered to be the most effective and environmentally friendly species to capture carbon dioxide among them because microalgae has ecological diversity can grow under different stress and it is the fastest growing plants on the earth. The second-generation sequencing technologies, also called next-generation sequencing, began around 2005. During different period of time, it provides different technology and platforms. Algae are one of the sources of biomass energy. Some species are also known for producing high-priced healthy foods. However, the algae research process is limited because lacking of algae genetic information. Hence, the research developments of the next generation sequencing analysis methods with transcriptome, and studies the algae growth under different conditions.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:20Z (GMT). No. of bitstreams: 1
ntu-106-D96642008-1.pdf: 3234944 bytes, checksum: fdf00e72bff13720f617c46d9b2316db (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsChapter 1 The applications of RNA-seq techniques in microalgae 1
1.1 Algae can produce high-value products 1
1.2 RNA-seq History 2
1.3 The applications of RNA-seq techniques in microalgae 3
Chapter 2 Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity 5
2.1 Introduction 7
2.2 Material and methods 10
2.2.1 Microalgal culture and treatment 10
2.2.2 Species identification and phylogenetic analysis 11
2.2.3 Determination of cell growth 12
2.2.4 Determination of residual nitrate concentration in the medium 12
2.2.5 RNA extraction and high-throughput sequencing 13
2.2.6 de novo transcriptome assembly 13
2.2.7 Functional annotation of Desmodesmus sp. JSC3 transcriptome 15
2.2.8 Expression analysis 16
2.2.9 Gene Ontology (GO) analysis 16
2.2.10 Quantitative real-time PCR (qPCR) 16
2.2.11 Determination of photosynthetic O2 evolution rate and respiration rate 17
2.2.12 Spectrophotometric determination of carotenoids and chlorophyll contents 18
2.2.13 Chromatographic analysis of lutein and other carotenoids 18
2.2.14 Chlorophyll a fluorescence determination of PSII activity using pulse amplitude modulation (PAM) fluorometry 19
2.2.15 Determination of nitrate concentration in the medium and total carbon and total nitrogen 20
2.2.16 Statistics 20
2.3 Results 21
2.3.1 Identification of a unicellular microalga accumulating high level of lutein after a period of culture as Desmodesmus sp. JSC3 21
2.3.2 de novo assembly of the Desmodesmus sp. JSC3 transcriptome and unigene annotation 27
2.3.3 GO enrichment analysis suggests that photosynthesis and pigment biosynthesis underwent extensive changes when Desmodesmus sp. JSC3 accumulated lutein 28
2.3.4 Analysis of the Desmodesmus sp. JSC3 transcriptome for genes involved in lutein biosynthesis 32
2.3.5 Transcriptome analysis of genes responsible for enhanced chlorophyll biosynthesis 35
2.3.6 Changes in photosynthetic activity and its associated transcriptome during lutein accumulation in a batch culture 40
2.4 Discussion 47
2.5 Conclusion 56
Chapter 3 Transcriptome analysis of nitrogen prolong culture induced carbohydrate accumulation in Desmodesmus sp. CNW-1 57
3.1 Introduction 58
3.2 Material and methods 59
3.2.1 Microalgal culture and treatment 59
3.2.2 Species identification and phylogenetic analysis 60
3.2.3 Determination of cell growth 61
3.2.4 RNA extraction and high-throughput sequencing 61
3.2.5 De novo transcriptome assembly 62
3.2.6 Functional annotation of Desmodesmus sp. CNW-1 transcriptome 63
3.2.7 Expression analysis and Gene Ontology (GO) analysis 64
3.3 Results 65
3.3.1 Identification of Desmodesmus sp. CNW–1 65
3.3.2 CNW physiological results 66
3.3.3 De novo assembly of the Desmodesmus sp. CNW–N transcriptome and unigene annotation 67
3.3.4 CNW-1 GO enrichment analysis 69
3.3.5 Analysis of the Desmodesmus sp. CNW-1 transcriptome for genes involved in starch biosynthesis 73
3.3.6 Transcriptome analysis of genes responsible for nitrogen starvation 76
3.4 Discussions 78
Chapter 4 Conclusions 79
REFERENCE 80
dc.language.isoen
dc.title次世代基因定序於於藻類上的應用與生理分析zh_TW
dc.titleApplication of next-generation sequencing and physiological analyses in microalgaeen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee高成炎(Cheng-Yan Kao),李澤民(Tse-Min Lee),張嘉修(Jo-Shu Chang),朱學亭(Hsueh-Ting Chu)
dc.subject.keyword微藻,次世代基因測序,轉錄體,生質能源,健康食品,zh_TW
dc.subject.keywordmicroalgae,next-generation sequencing,transcriptome,alternative energy,healthy foods,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201703631
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-106-D96642008-1.pdf
  目前未授權公開取用
3.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved