Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77397
標題: 具權重容錯能力之深度神經網路加速器
A Weight-Error-Resilient Deep Neural Network Accelerator
作者: 姚云瀚
Yun-Han Yao
指導教授: 劉宗德
Tsung-Te Liu
關鍵字: 深度神經網路,機器學習,物聯網,硬體加速器,容錯,冗餘,重複編碼,
deep neural networks (DNNs),machine learning (ML),Internet of Things (IoT),hardware accelerators,error resilience,redundancy,repetition code,
出版年 : 2019
學位: 碩士
摘要: 近年來機器學習領域蓬勃發展,深度神經網路應用於物聯網能處理大量的資料,為增進能源效率及減少網路頻寬需求,針對深度神經網路最佳化的硬體加速器成為物聯網不可或缺的一部份。然而,深度神經網路需要大量的記憶體以儲存權重,當降低操作電壓時,記憶體容易發生錯誤,在先進製程尤其明顯,此特性限制了能效進步的空間,需要妥善的處理。

本論文在系統層面藉由對權重參數做極端精確度縮放找出深度神經網路中可以運用的額外資源,並配合飽和量化避免放大錯誤效果,再使用位元敏感度分析及重複編碼有效率的應用多出來的位元空間以保護較重要的資訊。硬體層面以28奈米CMOS製程實現具備權重容錯能力的深度神經網路加速器,包含可配置的乘加器及多數投票器以適用於不同的精確度及不同位元的重複編碼。透過本論文提出的方法,在MNIST測資95\%預測正確率下,能容忍15\%權重位元錯誤,配合電壓縮放,操作在0.66V、323MHz,能效可達到261.5nJ/prediction。
In recent years, machine learning capabilities develop rapidly. Deep neural networks (DNN) can analyze a large amount of different-type data in the Internet of Things system. To improve energy efficiency and reduce Internet bandwidth, ASICs for DNN are necessary. However, DNNs require large-sized SRAMs to store weight parameters, which would be unstable at a reduced supply voltage, especially in the advanced technology node. SRAM errors limit the energy efficiency if the ASIC is not designed properly.

In this work, a system-level solution is proposed. First, to get additional space for redundancy, extreme precision scaling with saturated quantization is applied. Then, bit-level sensitivity analysis and repetition code are applied to protect more important information. A 28-nm CMOS weight-error-resilient DNN accelerator test chip with configurable multiply accumulators and configurable majority voters is designed for hardware performance and overhead evaluation. With the proposed method, the DNN accelerator can tolerate 15\% weight bit errors with 95\% prediction accuracy for MNIST dataset. With voltage scaling, the chip can achieve 261.5nJ per prediction operated at 0.66V, 323MHz.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77397
DOI: 10.6342/NTU201900730
全文授權: 未授權
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
4.83 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved