Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77397
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宗德zh_TW
dc.contributor.advisorTsung-Te Liuen
dc.contributor.author姚云瀚zh_TW
dc.contributor.authorYun-Han Yaoen
dc.date.accessioned2021-07-10T21:59:52Z-
dc.date.available2024-04-21-
dc.date.copyright2019-04-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138, Jan 2017.
[2] K. Gauen, R. Rangan, A. Mohan, Y. Lu, W. Liu, and A. C. Berg. Low-power image recognition challenge. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 99–104, Jan 2017.
[3] M. Horiguchi and K. Itoh. Nanoscale Memory Repair. Springer Publishing Company, Incorporated, 2013.
[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.
[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.
[6] M. Lee, K. Hwang, and W. Sung. Fault tolerance analysis of digital feed-forward deep neural networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5031–5035, May 2014.
[7] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. 14.5 envision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm fdsoi. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), pages 246–247, Feb 2017.
[8] E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quantization for deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7197–7205, July 2017.
[9] A. Pavlov and M. Sachdev. CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies. Springer, 2008.
[10] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland, D. Brooks, and G. Wei. Ares: A framework for quantifying the resilience of deep neural networks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, June 2018.
[11] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato, G. Wei, and D. Brooks. Minerva: Enabling low-power, highly-accurate deep neural network accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pages 267–278, June 2016.
[12] M. E. Sinangil, J. W. Poulton, M. R. Fojtik, T. H. G. III, S. G. Tell, A. J. Gotterba, J. Wang, J. Golbus, B. Zimmer, W. J. Dally, and C. T. Gray. A 28 nm 2 Mbit 6T SRAM With Highly Configurable Low-Voltage Write-Ability Assist Implementation and Capacitor-Based Sense-Amplifier Input Offset Compensation. IEEE Journal of Solid-State Circuits, 51(2):557–567, Feb 2016.
[13] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, Dec 2017.
[14] C. Torres-Huitzil and B. Girau. Fault and error tolerance in neural networks: A review. IEEE Access, 5:17322–17341, 2017.
[15] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. Axnn: Energy-efficient neuromorphic systems using approximate computing. In 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 27–32, Aug 2014.
[16] P. N. Whatmough, S. K. Lee, D. Brooks, and G. Wei. Dnn engine: A 28-nm timing error tolerant sparse deep neural network processor for iot applications. IEEE Journal of Solid-State Circuits, 53(9):2722–2731, Sep. 2018.
[17] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Wei. 14.3 a 28nm soc with a 1.2ghz 568nj/prediction sparse deep-neural-network engine with >0.1 timing error rate tolerance for iot applications. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), pages 242–243, Feb 2017.
[18] Y. Yamada, T. Sano, Y. Tanabe, Y. Ishigaki, S. Hosoda, F. Hyuga, A. Moriya, R. Hada, A. Masuda, M. Uchiyama, T. Koizumi, T. Tamai, N. Sato, J. Tanabe, K. Kimura, R. Murakami, and T. Yoshikawa. 7.2 a 20.5tops and 217.3gops/mm2 multicore soc with dnn accelerator and image signal processor complying with iso26262 for automotive applications. In 2019 IEEE International Solid- State Circuits Conference - (ISSCC), pages 132–134, Feb 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77397-
dc.description.abstract近年來機器學習領域蓬勃發展,深度神經網路應用於物聯網能處理大量的資料,為增進能源效率及減少網路頻寬需求,針對深度神經網路最佳化的硬體加速器成為物聯網不可或缺的一部份。然而,深度神經網路需要大量的記憶體以儲存權重,當降低操作電壓時,記憶體容易發生錯誤,在先進製程尤其明顯,此特性限制了能效進步的空間,需要妥善的處理。

本論文在系統層面藉由對權重參數做極端精確度縮放找出深度神經網路中可以運用的額外資源,並配合飽和量化避免放大錯誤效果,再使用位元敏感度分析及重複編碼有效率的應用多出來的位元空間以保護較重要的資訊。硬體層面以28奈米CMOS製程實現具備權重容錯能力的深度神經網路加速器,包含可配置的乘加器及多數投票器以適用於不同的精確度及不同位元的重複編碼。透過本論文提出的方法,在MNIST測資95\%預測正確率下,能容忍15\%權重位元錯誤,配合電壓縮放,操作在0.66V、323MHz,能效可達到261.5nJ/prediction。
zh_TW
dc.description.abstractIn recent years, machine learning capabilities develop rapidly. Deep neural networks (DNN) can analyze a large amount of different-type data in the Internet of Things system. To improve energy efficiency and reduce Internet bandwidth, ASICs for DNN are necessary. However, DNNs require large-sized SRAMs to store weight parameters, which would be unstable at a reduced supply voltage, especially in the advanced technology node. SRAM errors limit the energy efficiency if the ASIC is not designed properly.

In this work, a system-level solution is proposed. First, to get additional space for redundancy, extreme precision scaling with saturated quantization is applied. Then, bit-level sensitivity analysis and repetition code are applied to protect more important information. A 28-nm CMOS weight-error-resilient DNN accelerator test chip with configurable multiply accumulators and configurable majority voters is designed for hardware performance and overhead evaluation. With the proposed method, the DNN accelerator can tolerate 15\% weight bit errors with 95\% prediction accuracy for MNIST dataset. With voltage scaling, the chip can achieve 261.5nJ per prediction operated at 0.66V, 323MHz.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:59:52Z (GMT). No. of bitstreams: 1
ntu-108-R05943043-1.pdf: 4945127 bytes, checksum: 0bf7861eef0af72abb894879b05a9436 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝iii
Acknowledgements v
摘要vii
Abstract ix
1 緒論1
1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 深度神經網路簡介5
2.1 深度神經網路運算與架構. . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 全連接深度神經網路. . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 卷積神經網路. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 深度神經網路容錯特性. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 錯誤模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 固有容錯性. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 相關研究與現有容錯增進方法11
3.1 容錯分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 容錯應用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 容錯增進. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 軟體訓練階段. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 硬體推理階段. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 容錯能力增進方法21
4.1 極端精確度縮放. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 飽和量化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 位元敏感度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 重要位元重複編碼. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 容錯能力比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 精確度、容錯能力可配置化的硬體實現33
5.1 可配置的多數投票器. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 可配置的乘累加器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 找最大值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 資料流. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 稀疏性利用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 電路分析與比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 總結與潛在改進方向43
參考文獻45
-
dc.language.isozh_TW-
dc.subject深度神經網路zh_TW
dc.subject機器學習zh_TW
dc.subject物聯網zh_TW
dc.subject硬體加速器zh_TW
dc.subject容錯zh_TW
dc.subject冗餘zh_TW
dc.subject重複編碼zh_TW
dc.subjectredundancyen
dc.subjecthardware acceleratorsen
dc.subjectrepetition codeen
dc.subjecterror resilienceen
dc.subjectdeep neural networks (DNNs)en
dc.subjectmachine learning (ML)en
dc.subjectInternet of Things (IoT)en
dc.title具權重容錯能力之深度神經網路加速器zh_TW
dc.titleA Weight-Error-Resilient Deep Neural Network Acceleratoren
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕志達;盧奕璋zh_TW
dc.contributor.oralexamcommitteeTzi-Dar Chiueh;Yi-Chang Luen
dc.subject.keyword深度神經網路,機器學習,物聯網,硬體加速器,容錯,冗餘,重複編碼,zh_TW
dc.subject.keyworddeep neural networks (DNNs),machine learning (ML),Internet of Things (IoT),hardware accelerators,error resilience,redundancy,repetition code,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU201900730-
dc.rights.note未授權-
dc.date.accepted2019-04-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved