請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋 | zh_TW |
| dc.contributor.advisor | Miin-Jang Chen | en |
| dc.contributor.author | 楊孟謙 | zh_TW |
| dc.contributor.author | Meng-Chien Yang | en |
| dc.date.accessioned | 2021-07-10T21:53:54Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Moore, G.E., Cramming more components onto integrated circuits. Proceedings of the IEEE, 1998. 86(1): p. 82-85.
2. Clark, R., et al., Perspective: New process technologies required for future devices and scaling. APL Materials, 2018. 6(5): p. 058203. 3. Mackus, A., A. Bol, and W. Kessels, The use of atomic layer deposition in advanced nanopatterning. Nanoscale, 2014. 6(19): p. 10941-10960. 4. Mackus, A.J., M.J. Merkx, and W.M. Kessels, From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chemistry of Materials, 2018. 31(1): p. 2-12. 5. Koehler, F., et al., Challenges in spacer process development for leading-edge high-k metal gate technology. physica status solidi (c), 2014. 11(1): p. 73-76. 6. Mistry, K., et al. A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. in 2007 IEEE International Electron Devices Meeting. 2007. IEEE. 7. Maiti, B., et al. PVD TiN metal gate MOSFETs on bulk silicon and fully depleted silicon-on-insulator (FDSOI) substrates for deep sub-quarter micron CMOS technology. in International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217). 1998. IEEE. 8. Lin, Y.-S., et al., Effective work function modulation of the bilayer metal gate stacks by the Hf-doped thin TiN interlayer prepared by the in-situ atomic layer doping technique. Solid State Communications, 2017. 258: p. 49-53. 9. Uhm, J. and H. Jeon, TiN diffusion barrier grown by atomic layer deposition method for Cu metallization. Japanese Journal of Applied Physics, 2001. 40(7R): p. 4657. 10. Kim, J.Y., et al., Remote plasma enhanced atomic layer deposition of TiN thin films using metalorganic precursor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004. 22(1): p. 8-12. 11. Kim, H. and W.-J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin solid films, 2009. 517(8): p. 2563-2580. 12. Kim, H., Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003. 21(6): p. 2231-2261. 13. Dingemans, G., et al., Plasma-assisted atomic layer deposition of low temperature SiO2. ECS Transactions, 2011. 35(4): p. 191-204. 14. Kim, H., Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films, 2011. 519(20): p. 6639-6644. 15. Profijt, H., et al., Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29(5): p. 050801. 16. Cheng, Y.-L., et al., Impact of plasma treatment on structure and electrical properties of porous low dielectric constant SiCOH material. Thin Solid Films, 2013. 544: p. 537-540. 17. Profijt, H.B., Plasma-surface interaction in plasma-assisted atomic layer deposition. 2012, Ph. D. thesis, Eindhoven University of Technology. 18. Pinna, N. and M. Knez, Atomic layer deposition of nanostructured materials. Vol. 1. 2012: Wiley Online Library. 19. Moulder, J.F. and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. 1992: Physical Electronics Division, Perkin-Elmer Corporation. 20. Fujiwara, H., Spectroscopic ellipsometry: principles and applications. 2007: John Wiley & Sons. 21. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題, 1994. 22. 鄧建龍, 姚潔宜, and 張茂男, X 光繞射分析在半導體工業上的應用. 編者的話 總編輯 張茂男 01, 2008. 23. Yasaka, M., X-ray thin-film measurement techniques. The Rigaku Journal, 2010. 26(2): p. 1-9. 24. Atanasov, S.E., B. Kalanyan, and G.N. Parsons, Inherent substrate-dependent growth initiation and selective-area atomic layer deposition of TiO2 using “water-free” metal-halide/metal alkoxide reactants. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016. 34(1): p. 01A148. 25. Longo, R.C., et al., Selectivity of metal oxide atomic layer deposition on hydrogen terminated and oxidized Si (001)-(2× 1) surface. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2014. 32(3): p. 03D112. 26. Yan, M., et al., Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates. Applied Physics Letters, 2001. 79(11): p. 1709-1711. 27. Chen, R., et al., Self-assembled monolayer resist for atomic layer deposition of HfO2 and ZrO2 high-κ gate dielectrics. Applied physics letters, 2004. 84(20): p. 4017-4019. 28. Chen, R., et al., Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Applied Physics Letters, 2005. 86(19): p. 191910. 29. Chen, R., et al., Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition. Chemistry of materials, 2005. 17(3): p. 536-544. 30. ODTS. Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/104817?lang=en®ion=TW. 31. Sung, M.M., G.J. Kluth, and R. Maboudian, Formation of alkylsiloxane self-assembled monolayers on Si3N4. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(2): p. 540-544. 32. Kluth, G.J., M.M. Sung, and R. Maboudian, Thermal behavior of alkylsiloxane self-assembled monolayers on the oxidized Si (100) surface. Langmuir, 1997. 13(14): p. 3775-3780. 33. George, S.M., Atomic layer deposition: an overview. Chemical reviews, 2009. 110(1): p. 111-131. 34. TMA. Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/257222?lang=en®ion=TW&gclid=Cj0KCQjw-b7qBRDPARIsADVbUbU1tcmWDHLXtcROu424nCggrs6oTzUo4xxWV2FU53U8hM9aYLeXfL4aAo3NEALw_wcB. 35. TDMAH. Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/455199?lang=en®ion=TW. 36. Wang, Y. and M. Lieberman, Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO2. Langmuir, 2003. 19(4): p. 1159-1167. 37. Guo, L., X. Qin, and F. Zaera, Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications. ACS applied materials & interfaces, 2016. 8(9): p. 6293-6300. 38. HMDS. Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/440191?lang=en®ion=TW. 39. Li, M.-Y., et al., Effect of process pressure on atomic layer deposition of Al2O3. Journal of the Electrochemical Society, 2007. 154(11): p. H967-H972. 40. Hackley, J.C., J.D. Demaree, and T. Gougousi, Atomic Layer Deposition of HfO 2 Thin Films on Si and GaAs Substrates. MRS Online Proceedings Library Archive, 2008. 1073. 41. Anthony, B., et al., I nsitu cleaning of silicon substrate surfaces by remote plasma-excited hydrogen. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1989. 7(4): p. 621-626. 42. Carter, R., et al., In Situ Remote H-Plasma Cleaning of Patterned Si-SiO2 Surfaces. Journal of the Electrochemical Society, 1994. 141(11): p. 3136-3140. 43. Steffen, H., et al., Process control of RF plasma assisted surface cleaning. Thin Solid Films, 1996. 283(1-2): p. 158-164. 44. Gladfelter, W.L., Selective metalization by chemical vapor deposition. Chemistry of materials, 1993. 5(10): p. 1372-1388. 45. Hausmann, D.M., et al., Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chemistry of materials, 2002. 14(10): p. 4350-4358. 46. Pierson, H.O., Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. 1996: William Andrew. 47. Wittmer, M. and H. Melchior, Applications of TiN thin films in silicon device technology. MRS Online Proceedings Library Archive, 1981. 10. 48. Knoops, H., et al., Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of The Electrochemical Society, 2008. 155(12): p. G287-G294. 49. Hayashida, T., et al., Investigation of Thermal Stability of TiN Film Formed by Atomic Layer Deposition Using Tetrakis (dimethylamino) titanium Precursor for Metal-Gate Metal–Oxide–Semiconductor Field-Effect Transistor. Japanese Journal of Applied Physics, 2010. 49(4S): p. 04DA16. 50. Krylov, I., et al., Obtaining low resistivity (~ 100 μ Ω cm) TiN films by plasma enhanced atomic layer deposition using a metalorganic precursor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018. 36(5): p. 051505. 51. Miikkulainen, V., et al., Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 2013. 113(2): p. 2. 52. Shih, H.-Y., et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Scientific reports, 2017. 7: p. 39717. 53. Lee, W.-H., et al., Nanoscale GaN epilayer grown by atomic layer annealing and epitaxy at low temperature. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 487-495. 54. TDMAT. Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/469858?lang=en®ion=TW. 55. Brennan, C.J., C.M. Neumann, and S.A. Vitale, Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates. Journal of Applied Physics, 2015. 118(4): p. 045307. 56. McCurdy, P.R., et al., Surface interactions of NH2 radicals in NH3 plasmas. The Journal of Physical Chemistry B, 1999. 103(33): p. 6919-6929. 57. Van Helden, J., et al., Production Mechanisms of NH and NH2 Radicals in N2-H2 Plasmas. The Journal of Physical Chemistry A, 2007. 111(45): p. 11460-11472. 58. Krylov, I., et al., Role of reactive gas on the structure and properties of titanium nitride films grown by plasma enhanced atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018. 36(6): p. 06A105. 59. Aida, M., et al., Enhanced deposition rate of sputtered amorphous silicon with a helium and argon gas mixture. Philosophical magazine letters, 1997. 76(2): p. 117-123. 60. Chang, T.-J., et al., High-K gate dielectrics treated with in situ atomic layer bombardment. ACS Applied Electronic Materials, 2019. 61. Renninger, M., "Umweganregung", eine bisher unbeachtete Wechselwirkungserscheinung bei Raumgitterinterferenzen. Zeitschrift fur Physik, 1937. 106(3): p. 141-176. 62. Zaumseil, P., High-resolution characterization of the forbidden Si 200 and Si 222 reflections. Journal of applied crystallography, 2015. 48(2): p. 528-532. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77278 | - |
| dc.description.abstract | 本論文主要分為兩部分,首先第一部份為區域選擇性原子層沉積(area-selective atomic layer deposition, AS-ALD),透過自組裝分子膜(self-assembly monolayer, SAM)選擇性接附在基板,能使其表面性質由親水變成疏水,並抑制ALD前驅物與表面反應。藉由水接觸角的分析,得知需要在適當的環境、時間下浸泡基板才能有披覆較完整的自組裝單分子膜,並且開發浸泡完SAM溶液後的清潔製程,避免基板上有SAM殘留,並達成一定程度的選擇比。第二部分利用電漿增強型原子層沉積(plasma-enhanced atomic layer deposition)技術,沉積氮化鈦薄膜提出改善薄膜內殘碳的方法,並利用X射線光電子能譜(X-ray photoelectron spectroscopy)、原子力顯微鏡(atomic force microscope)、穿透式電子顯微鏡(transmission electron microscope)與Hall效應等技術進行檢測,因而成功降低氮化鈦薄膜的電阻率。 | zh_TW |
| dc.description.abstract | This thesis is divided into two parts. The first part is about area-selective atomic layer deposition (ALD) via the self-assembled monolayer (SAM) passivation. By utilizing the intrinsically selective absorption of SAM, SAM is capable of selectively chemically adsorbing on different substrate surfaces. Through contact angle measurement, the coverage of SAM can be characterizated. Substrate dipped into the SAM solution under suitable environment control is essential to achieve good coverage of SAM. In addition, the cleaning step is critical to remove the SAM. Good area-selective ALD has been achieved. The second part of this thesis investigates the impact of plasma-enhanced atomic layer deposition (PE-ALD) on the resistivity of TiN thin films, which were characterized by the atomic force microscope, transmission electron microscope, and Hall effect measurements. The X-ray photoelectron spectroscop analysis indicates that the carbon content in the TiN thin films can be reduced by the PE-ALD process, leading to significant reduction in the resistivity of TiN thin films. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:53:54Z (GMT). No. of bitstreams: 1 ntu-108-R06527044-1.pdf: 4631034 bytes, checksum: 1466f343cb2d3795afac667a296044a7 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 簡介 1 1.1 研究動機 1 1.2 原子層沉積技術(ALD) 3 1.2.1 原子層沉積技術 3 1.2.2 電漿增強原子層沉積技術 6 1.3 自組裝單分子膜(self-assembled monolayers, SAMs) 10 1.4 量測儀器簡介 11 1.4.1 X光光電子能譜儀(X-ray Photoemission Spectroscopy, XPS) 11 1.4.2 橢圓偏光儀(Spectroscopic Ellipsometer, SE) 11 1.4.3 低掠角X光繞射(Grazing Incidence X-Ray Diffraction, GIXRD) 14 1.4.4 X光反射率分析(X-ray reflectometry, XRR) 15 1.5 論文導覽 18 第二章 以自組裝單分子膜為基礎的區域選擇性原子層沉積(AS-ALD) 19 2.1 簡介與文獻回顧 19 2.2 實驗步驟 23 2.2.1 自組裝單分子與ALD前驅物介紹 25 2.3 實驗結果與討論 28 2.3.1 建立標準SAMs製程 28 2.3.2 觀察SAMs製程參數調整對ALD選擇性的影響 33 2.3.3 觀察調整ALD製程參數調整對選擇性的影響 37 2.3.4 觀察退火及電漿對SAMs的移除能力 39 2.3.5 Multi-cycles SAMs製程對於選擇性的影響 50 2.3.6 觀察甲苯放置時間對矽基板浸泡ODTS溶液後氧化的影響 61 2.4 結論 62 第三章 以原子層轟擊技術改良氮化鈦薄膜性質 64 3.1 簡介與文獻回顧 64 3.2 實驗步驟 68 3.2.1 ALD前驅物介紹 70 3.3 實驗結果與討論 70 3.3.1 比較不同標準TiN製程 70 3.3.2 比較電漿轟擊加入不同標準TiN製程的影響 72 3.3.3 比較不同功率的電漿轟擊加入N2/H2 TiN標準製程的影響 75 3.3.4 比較Ar電漿轟擊後延遲時間對TiN薄膜電阻率的影響 78 3.3.5 比較Ar電漿轟擊時間對TiN薄膜電阻率的影響 79 3.4 結論 86 第四章 總結 87 參考文獻 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 區域選擇性沉積 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 自組裝單分子膜 | zh_TW |
| dc.subject | 氮化鈦 | zh_TW |
| dc.subject | self-assembled monolayer (SAM) | en |
| dc.subject | area-selective atomic layer deposition(AS-ALD) | en |
| dc.subject | atomic layer deposition(ALD) | en |
| dc.subject | TiN | en |
| dc.title | 先進原子層技術以及區域選擇性原子層沉積之研究 | zh_TW |
| dc.title | Advanced Atomic Layer Technology and Area-Selective Atomic Layer Deposition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李峻霣;吳肇欣;陳則安;陳佑昇 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Yun Li;Chaoh-Sin Wu;Tse-An Chen;Yu-Sheng Chen | en |
| dc.subject.keyword | 原子層沉積技術,自組裝單分子膜,區域選擇性沉積,氮化鈦, | zh_TW |
| dc.subject.keyword | atomic layer deposition(ALD),self-assembled monolayer (SAM),area-selective atomic layer deposition(AS-ALD),TiN, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU201903155 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
