請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.author | Shyh-Haur Huang | en |
| dc.contributor.author | 黃識豪 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:44:03Z | - |
| dc.date.available | 2021-07-10T21:44:03Z | - |
| dc.date.copyright | 2020-08-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77033 | - |
| dc.description.abstract | 木質纖維素作為全球最大農業廢棄物成份來源,如何將其分解再利用一直以來都是循環經濟之重要課題。本篇擬透過農業廢棄資材甘蔗渣 (sugarcane bagasse, SB) 進行酸化水解以產生碳源,並透過常壓電漿(atmospheric cold plasma, ACP) 將酸水解過程中所產生毒性物質如甲酸、糠醛或羥甲基糠醛降解,並將電漿處理酸水解液應用於細菌性纖維 (bacterial cellulose, BC)生產,以期達到廢棄纖維素再生纖維素之目的。本研究首先以水萃、預處理和酸水解三階段處理SB,可從每1 g SB得到0.74 g可發酵糖、0.0096 g 甲酸、0.005 g 糠醛與0.013 g 羥甲基糠醛。優化ACP條件後,可發現當SB水解液以氬氣ACP於200 W下處理25分鐘可將毒性物質降解至最低抑制濃度。於BC生產實驗,可發現ACP處理前SB水解液之BC產量(1.88 g/L)較處理後組別(1.68 g/L)高,推測可能因SB水解液內含可促進BC生產之未知物質,然而此物質與毒性物質皆被ACP降解,導致BC產量不符合預期結果。由材料特性分析可知ACP處理與未處理SB水解液所生產BC,其化學鍵結、結構型態和結晶型態並不會與HS培養液生產BC有所差異,但ACP處理後組別發酵BC結晶度有下降的趨勢。於熱重分析結果發現模擬液組別會導致BC熱穩定性下降,而於SB組別皆不會受到影響,推測SB內可能含未知物質,其除了可增加BC產量外,亦可降低毒性物質對BC熱穩定性之影響。最後,透過電漿處理雖無法使SB酸水解液生產BC能力上升,但亦發現於電漿處理上,需針對微生物種類進行優化,未來擬透過不同氣體ACP處理酸解SB以找出適合BC生產之處理條件,以達廢棄纖維素再生纖維素之目標。 | zh_TW |
| dc.description.abstract | Lignocellulose is the major ingredient of global agricultural waste. Due to its availability and high sugar content, deconstruction of lignocellulosic material turns into most important issue in circular economy. In this study, sugarcane bagasse (SB) was hydrolyzed with sulfuric acid to obtain the carbon sources, and atmospheric cold plasma (ACP) was used to remove the toxic compounds produced from acid hydrolysis process including formic acid, furfural and 5-hydroxymethylfurfural (HMF). The detoxified acid hydrolysate was then applied in bacterial cellulose (BC) production to achieve the cellulosic waste recycle use. A three-step deconstruction strategy (water extraction, pretreatment, and acid hydrolysis) was carried out to increase fermented sugar recovery and decrease the toxic compounds formation. The result showed that 0.74 g of fermentable sugar, 0.0096 g of formic acid, 0.005 g of furfural, and 0.013 g of hydroxymethylfurfural were produced from one gram of SB. The toxic substances were then degraded to the lowest inhibitory concentration of BC production in the optimized ACP conditions (argon ACP at 200 W for 25 minute). In BC production, ACP treated SB hydrolysate group exhibited more higher BC production (1.88 g /L) compared to ACP untreated group (1.68 g/L). It may due to some unknown BC production enhancing ingredients are also be degraded during ACP process. In material property analysis, BCs produced from SB hydrolysate with/without ACP treatment presented the similar chemical composition, morphology and crystalline type compared to the BC produced from HS medium, but the crystallinity of BC fermented from the latter group decreased. In thermogravimetric analysis, the decreased thermostability of BC from mimic medium group showed that the toxic compounds may influence its network structure during BC production. However, this phenomenon did not appear in the ACP treated and untreated SB hydrolysate groups, which suggested that the existance of some ingradients in SB may offset the effect of toxic compoumds during BC production. It also needs more evidences to support the hypothesis. Last but not at least, although ACP treatment can be used to degrade the fermented inhibitors from SB hydrolysis, the treated SB hydrolysate did not improve BC production. In the future work, selection of different gas-based ACP system will be the other direction to find out the optimal detoxification for BC production and achieve the goal of cellulostic waste reuse to regenerate cellulose. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:44:03Z (GMT). No. of bitstreams: 1 U0001-2107202009213900.pdf: 4071940 bytes, checksum: d6981c26d2528aed7e0e4793ee0b695b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 I 中文摘要 II Abstract III 圖目錄 X List of figures XII 表目錄 XV List of tables XVI 壹、前言 1 貳、文獻回顧 3 1.1循環經濟與其議題 3 1.1.1循環經濟 3 1.1.2搖籃到搖籃 4 2.2細菌纖維素概述 5 2.2.1細菌纖維素之結構 6 2.2.2細菌纖維素之合成 9 2.2.3 Komagataeibacter spp. 11 2.2.4細菌纖維素之生產 11 2.2.4.1 靜置培養 12 2.2.4.2 攪拌培養 13 2.2.4.3 培養液 14 2.2.4.4 添加物質之影響 15 2.2.5細菌纖維素的應用 15 2.2.5.1食品 15 2.2.5.2造紙工業 16 2.2.5.3化妝品 16 2.2.5.4 醫藥產業 16 2.2.5.5其它應用 18 2.3生質原料 19 2.3.1糖質生質原料 19 2.3.2澱粉質生質原料 19 2.3.3藻類生質原料 20 2.3.4木質纖維生質原料 20 2.4木質纖維預處理 22 2.4.1物理性與物理化學性預處理法 23 2.4.2生物性預處理法 23 2.4.3化學性預處理法 23 2.4.3.1鹼預處理法 24 2.4.3.2酸預處理法 25 2.4.4.3有機溶劑預處理法 27 2.5纖維素解聚 28 2.6酸解木質纖維產生之抑制發酵物 31 2.6.1糠醛 (furfural) 32 2.6.2羥甲基糠醛 (5-hydroxymethylfurfural) 33 2.6.3有機酸 34 2.6.4酚類化合物 (phenolic compounds) 35 2.7常見抑制發酵物解毒方法 36 2.7.1物理解毒法 36 2.7.2化學解毒法 37 2.7.3酵素解毒法 37 2.7.4生物解毒法 38 2.8電漿簡介 39 2.8.1電漿原理 39 2.8.2電漿分類 39 2.8.3電漿氣體與產生活性物質 41 2.8.4電漿之應用 43 2.8.4.1物質降解 43 2.8.4.2材料修飾 46 2.8.4.3食品加工 46 2.9甘蔗渣概述 47 参、研究目的與假設 48 3.1研究目的 48 3.2研究假設 48 3.3研究架構 49 肆、材料與方法 51 4.1甘蔗渣農業資材 51 4.2微生物發酵 51 4.2.1發酵菌株 51 4.2.2 培養液 51 4.3 HPLC 標準品及分析溶劑 52 4.4儀器設備 53 4.5蔗渣三階段處理 55 4.5.1 甘蔗渣前處理 55 4.5.2水萃 55 4.5.3酸預處理 55 4.5.4酸水解 55 4.6電漿處理 57 4.6.1不同電漿氣體比較 57 4.6.2 氬氣電漿不同時間比較 57 4.6.3氬氣電漿不同瓦數比較 58 4.7細菌纖維素生產 59 4.7.1菌種保存 59 4.7.2細菌纖維素與細胞乾重 59 4.8發酵試驗 60 4.8.1生長曲線 60 4.8.2 K. hansenii對毒性物質之耐受性試驗 60 4.8.3蔗渣水解液與模擬液發酵 60 4.9結構特性分析 62 4.9.1 掃描電子顯微鏡 62 4.9.2 X光繞射儀 62 4.9.3熱重分析儀 62 4.9.4水分含量 62 4.9.5傅立葉轉換紅外光譜 63 4.10 HPLC分析 64 4.11統計 65 伍、結果與討論 66 5.1蔗渣三階段處理 66 5.1.1水萃 66 5.1.2酸預處理 67 5.1.3酸水解 72 5.2 K. hansenii ATCC 23769生化特性分析 77 5.2.1生長曲線 77 5.2.2不同毒性物質耐受性試驗 78 5.3非熱電漿效果評估 82 5.3.1電漿氣體效果評估 83 5.3.2氬氣電漿時間優化 88 5.3.3氬氣電漿瓦數優化 90 5.4蔗渣水解液與模擬液之細菌纖維素發酵 93 5.5材料特性分析 96 5.5.1掃描電子顯微鏡 96 5.5.2 X光繞射儀 99 5.5.3熱重分析儀 101 5.5.4水分含量 103 5.5.5傅立葉轉換紅外光譜 104 陸、結論 106 柒、參考文獻 108 捌、附錄 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 解毒 | zh_TW |
| dc.subject | 常壓冷電漿 | zh_TW |
| dc.subject | 甘蔗渣 | zh_TW |
| dc.subject | 細菌纖維素 | zh_TW |
| dc.subject | 酸水解 | zh_TW |
| dc.subject | bacterial cellulose | en |
| dc.subject | detoxification | en |
| dc.subject | acid hydrolysate | en |
| dc.subject | atmospheric cold plasma | en |
| dc.subject | sugarcane bagasse | en |
| dc.title | 常壓冷電漿對蔗渣水解液進行解毒生產細菌纖維素 | zh_TW |
| dc.title | Detoxification of Sugarcane Bagasse Hydrolysate by Atmospheric Cold Plasma for Bacterial Cellulose Production | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林欣平(Shin-Ping Lin),羅至佑(Chih-Yu Lo),蕭心怡(Hsin-I Hsiao),洪偉鈞(Wei-Chun Hung) | |
| dc.subject.keyword | 解毒,酸水解,細菌纖維素,甘蔗渣,常壓冷電漿, | zh_TW |
| dc.subject.keyword | acid hydrolysate,detoxification,bacterial cellulose,atmospheric cold plasma,sugarcane bagasse, | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU202001678 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2107202009213900.pdf 未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
