請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Yi-Shan Lai | en |
| dc.contributor.author | 賴宜姍 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:42:44Z | - |
| dc.date.available | 2021-07-10T21:42:44Z | - |
| dc.date.copyright | 2020-08-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 林欣誼. 以酵母菌發酵提高苦瓜甲醇萃取物中功效性成分3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al之探討. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2019. 邱群慧. 羅漢果皂苷分析與利用靈芝及酵母菌對其進行生物轉換. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2013. 崔竣杰; 李波; 程蛟文; 胡开林, 苦瓜苦味物质及其生物合成研究进展. 园艺学报 2015, 42 (9), 1707-1718. 莊莎莎. 羅漢果皂苷的製備與純化. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2016. 陳怡潔. 不同酵母菌珠對羅漢果皂苷轉換之影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2017. 劉宜叡. 加熱溫度及酵母菌生物轉換對苦瓜皂苷之影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2017. 賴韻如. 探討酵母菌與乳酸菌轉換苦瓜皂苷之影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2018. Abdel-Banat, B. M.; Nonklang, S.; Hoshida, H.; Akada, R., Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 2010, 27 (1), 29-39. Ahn, Y. O.; Shimizu, B.-i.; Sakata, K.; Gantulga, D.; Zhou, Z.; Bevan, D. R.; Esen, A., Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis. Plant and Cell Physiology 2010, 51 (1), 132-143. Akaracharanya, A.; Krisomdee, K.; Tolieng, V.; Kitpreechavanich, V.; Tanasupawat, S., Improved SSF-cellulosic ethanol production by the cellobiose fermenting yeast Kluyveromyces marxianus G2-16-1. Chiang Mai Journal of Science 2016, 43 (5), 985-996. Alcázar, M.; Kind, T.; Gschaedler, A.; Silveria, M.; Arrizon, J.; Fiehn, O.; Vallejo, A.; Higuera, I.; Lugo, E., Effect of steroidal saponins from Agave on the polysaccharide cell wall composition of Saccharomyces cerevisiae and Kluyveromyces marxianus. Lwt 2017, 77, 430-439. Aldana, C. R. V. d.; Correa, J.; Segundo, P. S.; Bueno, A.; Nebreda, A. R.; Mendez, E.; Rey, F. d., Nucleotide sequence of the exo-1,3-β-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 1991, 97 (2), 173-182. Amrane, A.; Prigent, Y., Behaviour of the yeast Kluyveromyces marxianus var. marxianus during its autolysis. Antonie van Leeuwenhoek 1996, 69 (3), 267-272. Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M., Yeast expression systems: overview and recent advances. Mol Biotechnol 2019, 61 (5), 365-384. Bajpai, P.; Margaritis, A., Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 2. Application for high fructose syrup production. Enzyme and Microbial Technology 1985, 7 (9), 459-461. Barron, N.; Marchant, R.; McHale, L.; McHale, A., Growth of a thermotolerant ethanol-producing strain of Kluyveromyces marxianus on cellobiose containing media. Biotechnology Letters 1994, 16 (6), 625-630. Bartkevičiūtė, D.; Sasnauskas, K., Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae. FEMS yeast research 2004, 4 (8), 833-840. Bhatia, Y.; Mishra, S.; Bisaria, V. S., Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 2002, 22 (4), 375-407. Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 2009, 37 ,233-238 Cernak, P.; Estrela, R.; Poddar, S.; Skerker, J. M.; Cheng, Y.-F.; Carlson, A. K.; Chen, B.; Glynn, V. M.; Furlan, M.; Ryan, O. W., Engineering Kluyveromyces marxianus as a robust synthetic biology platform host. MBio 2018, 9 (5), e01410-18. Chandrasekar, B.; Mukherjee, B.; Mukherjee, S., Blood sugar lowering potentiality of selected Cucurbitaceae plants of Indian origin. The Indian Journal of Medical Research 1989, 90, 300-305. Chang, C.-I.; Chou, C.-H.; Liao, M.-H.; Chen, T.-M.; Cheng, C.-H.; Anggriani, R.; Tsai, C.-P.; Tseng, H.-I.; Cheng, H.-L., Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. Journal of Functional Foods 2015, 13, 214-224. Chiu, C. H.; Wang, R.; Lee, C. C.; Lo, Y. C.; Lu, T. J., Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J Agric Food Chem 2013, 61 (29), 7127-34. Choi, R. Y.; Ham, J. R.; Lee, H. I.; Cho, H. W.; Choi, M. S.; Park, S. K.; Lee, J.; Kim, M. J.; Seo, K. I.; Lee, M. K., Scopoletin supplementation ameliorates steatosis and inflammation in diabetic mice. Phytotherapy Research 2017, 31 (11), 1795-1804. Cicek, M.; Blanchard, D.; Bevan, D. R.; Esen, A., The aglycone specificity-determining sites are different in 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (Maize beta -glucosidase) and dhurrinase (Sorghum beta -glucosidase). J Biol Chem 2000, 275 (26), 20002-11. Deshaware, S.; Gupta, S.; Singhal, R. S.; Joshi, M.; Variyar, P. S., Debittering of bitter gourd juice using beta-cyclodextrin: Mechanism and effect on antidiabetic potential. Food Chem 2018, 262, 78-85. Fonseca, G. G.; Heinzle, E.; Wittmann, C.; Gombert, A. K., The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 2008, 79 (3), 339-54. Gnonlonfin, G. B.; Sanni, A.; Brimer, L., Review scopoletin–a coumarin phytoalexin with medicinal properties. Critical Reviews in Plant Sciences 2012, 31 (1), 47-56. Grandits, M.; Michlmayr, H.; Sygmund, C.; Oostenbrink, C., Calculation of substrate binding affinities for a bacterial GH78 rhamnosidase through molecular dynamics simulations. Journal of Molecular Catalysis B: Enzymatic 2013, 92, 34-43. Gratzner, H. G., Cell wall alterations associated with the hyperproduction of extracellular enzymes in Neurospora crassa. Journal of Bacteriology 1972, 111 (2), 443-446. Gupte, A.; Nair, J., β-galactosidase production and ethanol fermentation from whey using Kluyveromyces marxianus NCIM 3551. 2010. Harvey, A. J.; Hrmova, M.; De Gori, R.; Varghese, J. N.; Fincher, G. B., Comparative modeling of the three‐dimensional structures of family 3 glycoside hydrolases. Proteins: Structure, Function, and Bioinformatics 2000, 41 (2), 257-269. Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 1991, 280 (2), 309-316. Kelly E. Heim, A. R. T., Dennis J. Bobilya, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 2002; (13). Ketudat Cairns, J. R.; Esen, A., beta-Glucosidases. Cell Mol Life Sci 2010, 67 (20), 3389-405. Khan, S.; Pozzo, T.; Megyeri, M.; Lindahl, S.; Sundin, A.; Turner, C.; Karlsson, E. N., Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC biochemistry 2011, 12 (1), 11. Kim, Y. S.; Ma, J. Y., Insight into the Hydrolytic Selectivity of β-glucosidase to enhance the contents of desired active phytochemicals in medicinal plants. BioMed Research International 2018, 2018. King, A.; Richard Dickinson, J., Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 2000, 16 (6), 499-506. Kumar, D. S.; Sharathnath, K. V.; Yogeswaran, P.; Harani, A.; Sudhakar, K.; Sudha, P.; Banji, D., A medicinal potency of momordica charantia. International Journal of Pharmaceutical Sciences Review and Research 2010, 1 (2), 95-100. Kuo, H. P.; Wang, R.; Huang, C. Y.; Lai, J. T.; Lo, Y. C.; Huang, S. T., Characterization of an extracellular beta-glucosidase from Dekkera bruxellensis for resveratrol production. J Food Drug Anal 2018, 26 (1), 163-171. Lane, M. M.; Morrissey, J. P., Kluyveromyces marxianus: A yeast emerging from its sister's shadow. Fungal Biology Reviews 2010, 24 (1-2), 17-26. Li, H.; Wang, X.; Ma, Y.; Yang, N.; Zhang, X.; Xu, Z.; Shi, J., Purification and characterization of a glycosidase with hydrolyzing multi-3-O-glycosides of spirostanol saponin activity from Gibberella intermedia. Journal of Molecular Catalysis B: Enzymatic 2016, 128, 46-51. Harinantenaina, L., Tanaka, M., Takaoka, S., Oda, M., Mogami, O., Uchida, M., Asakawa, Y.. Momordica charantia constituents and antidiabetic screening of the isolated major compounds.Chemical and Pharmaceutical Bulletin 2006, 54(7), 1017-1021. Löbs, A.-K.; Engel, R.; Schwartz, C.; Flores, A.; Wheeldon, I., CRISPR–Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol Biofuels 2017, 10 (1), 164. Marín, L.; Miguélez, E. M.; Villar, C. J.; Lombó, F., Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international 2015, 2015. Matos, M. J.; Santana, L.; Uriarte, E.; Abreu, O. A.; Molina, E.; Yordi, E. G., Coumarins—an important class of phytochemicals. Phytochemicals-Isolation, Characterisation and Role in Human Health 2015, 113-140. Mazlan, F. A.; Annuar, M. S.; Sharifuddin, Y., Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential. PeerJ 2015, 3, e1376. McCotter, S. W.; Horianopoulos, L. C.; Kronstad, J. W., Regulation of the fungal secretome. Current genetics 2016, 62 (3), 533-545. Mekuria, D. B.; Kashiwagi, T.; Tebayashi, S.-i.; Kim, C.-S., Cucurbitane glucosides from Momordica charantia leaves as oviposition deterrents to the leafminer, Liriomyza trifolii. Zeitschrift für Naturforschung C 2006, 61 (1-2), 81-86. Murata, Y.; Yoshikawa, S.; Suzuki, Y. A.; Sugiura, M.; Inui, H.; Nakano, Y., Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori. Journal of the Japanese Society for Food Science and Technology (Japan) 2006. Nam, K. H.; Sung, M. W.; Hwang, K. Y., Structural insights into the substrate recognition properties of β-glucosidase. Biochemical and Biophysical Research communications 2010, 391 (1), 1131-1135. Nonklang, S.; Abdel-Banat, B. M.; Cha-aim, K.; Moonjai, N.; Hoshida, H.; Limtong, S.; Yamada, M.; Akada, R., High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 2008, 74 (24), 7514-7521. Qi, X.-Y.; Chen, W.-J.; Zhang, L.-Q.; Xie, B.-J., Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutrition research 2008, 28 (4), 278-284. Santos, K. K.; Matias, E. F.; Sobral-Souza, C. E.; Tintino, S. R.; Morais-Braga, M. F.; Guedes, G. M.; Santos, F. A.; Sousa, A. C.; Rolon, M.; Vega, C.; de Arias, A. R.; Costa, J. G.; Menezes, I. R.; Coutinho, H. D., Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol 2012, 50 (2), 162-6. Schmidt, S.; Rainieri, S.; Witte, S.; Matern, U.; Martens, S., Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 2011, 77 (5), 1751-7. Shao, Y.; Zhang, Y.-H.; Zhang, F.; Yang, Q.-M.; Weng, H.-F.; Xiao, Q.; Xiao, A.-F., Thermostable Tannase from Aspergillus Niger and Its Application in the Enzymatic Extraction of Green Tea. Molecules 2020, 25 (4), 952. Srivastava, A.; Mishra, S.; Chand, S., Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551. N Biotechnol 2015, 32 (4), 412-8. Suzuki, Y. A.; Murata, Y.; Inui, H.; Sugiura, M.; Nakano, Y., Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem 2005, 53 (8), 2941-6. Trombetta, D.; Castelli, F.; Sarpietro, M. G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G., Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005, 49 (6), 2474-8. Varghese, J. N.; Hrmova, M.; Fincher, G. B., Three-dimensional structure of a barley β-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 1999, 7 (2), 179-190. Vekariya, R. H.; Patel, H. D., Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Synthetic Communications 2014, 44 (19), 2756-2788. Voget, C. E., Recovery of ß-galactosidase from the yeast Kluyveromyces lactis by cell permeabilization with sarkosyl. Process Biochemistry 2018, 75, 250-256. Wang, J.; Ma, Y.-L.; Wu, X.-Y.; Yu, L.; Xia, R.; Sun, G.-X.; Wu, F.-A., Selective hydrolysis by commercially available hesperidinase for isoquercitrin production. Journal of Molecular Catalysis B: Enzymatic 2012, 81, 37-42. Wang, R.; Chen, Y. C.; Lai, Y. J.; Lu, T. J.; Huang, S. T.; Lo, Y. C., Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I. Food Chem 2019, 276, 43-49. Wang, R.; Lin, P.-Y.; Huang, S.-T.; Chiu, C.-H.; Lu, T.-J.; Lo, Y.-C., Hyperproduction of β-glucanase Exg1 promotes the bioconversion of mogrosides in Saccharomyces cerevisiae mutants defective in mannoprotein deposition. Journal of Agricultural and Food Chemistry 2015, 63 (47), 10271-10279. Xia, L.; Ruppert, M.; Wang, M.; Panjikar, S.; Lin, H.; Rajendran, C.; Barleben, L.; Stockigt, J., Structures of alkaloid biosynthetic glucosidases decode substrate specificity. ACS Chem Biol 2012, 7 (1), 226-34. Xu, F.; Li, D.-P.; Huang, Z.-C.; Lu, F.-L.; Wang, L.; Huang, Y.-L.; Wang, R.-F.; Liu, G.-X.; Shang, M.-Y.; Cai, S.-Q., Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn. Journal of Pharmaceutical and Biomedical Analysis 2015, 115, 418-430. Yoshida, E.; Hidaka, M.; Fushinobu, S.; Koyanagi, T.; Minami, H.; Tamaki, H.; Kitaoka, M.; Katayama, T.; Kumagai, H., Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 beta-glucosidase from Kluyveromyces marxianus. Biochem J 2010, 431 (1), 39-49. Yoshida, E.; Hidaka, M.; Fushinobu, S.; Koyanagi, T.; Minami, H.; Tamaki, H.; Kitaoka, M.; Katayama, T.; Kumagai, H., Purification, crystallization and preliminary X-ray analysis of beta-glucosidase from Kluyveromyces marxianus NBRC1777. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009, 65 (Pt 11), 1190-2. Zhu, Y.; Jia, H.; Xi, M.; Li, J.; Yang, L.; Li, X., Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice. Process Biochemistry 2017a, 62, 114-121. Zhu, Y.; Jia, H.; Xi, M.; Xu, L.; Wu, S.; Li, X., Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem 2017b, 214, 39-46. Zhu, Y.; Zhu, H.; Qiu, M.; Zhu, T.; Ni, J., Investigation on the mechanisms for biotransformation of saponins to diosgenin. World J Microbiol Biotechnol 2014, 30 (1), 143-52. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76993 | - |
| dc.description.abstract | 葡萄糖苷水解酶普遍存在於生物體中,可從多醣或醣苷的非還原端水解醣苷鍵,常被食品工業用來水解帶醣基的物質,提升產品的生理活性及改善風味。皂苷為植物的二級代謝產物,通常以醣苷形式存在,過去文獻提及水解醣苷上葡萄糖基能改善風味及提升皂苷的生理活性。先前實驗室利用多株酵母菌與乳酸菌篩選具有苦瓜皂苷能力之菌株,發現酵母菌Kluyveromyces marxianus具有轉換苦瓜中苦味皂苷Momordicoside L及Momordicoside K能力,同時提升具有降血糖功效成分3β, 7β, 25-trihydroxycucurbita-5, 23 (E)-dien-19-al之含量,並觀察到K.marxianus中β-glucosidase (Bgl1) 蛋白可能為轉換苦瓜皂苷之目標蛋白。本研究利用基因突變菌株更進一步驗證Bgl1為K.marxianus中主要轉換苦瓜皂苷之蛋白,並以Escherichia coli BL21 (DE3)大量表現Bgl1,利用親和性管柱純化,將純化蛋白質進行受質水解特異性探討,結果顯示從結構簡單的單環之硝基苯酚 (nitrophenyl)、二環之香豆素 (coumarins)衍生物及三環之黃酮類 (flavonoids)化合物,至結構較複雜的四環三萜類化合物苦瓜皂苷及羅漢果皂苷,Bgl1能水解不同環狀結構上O-linked醣基,也能水解羅漢果皂苷上β-1,6鍵結之醣鏈,但無法水解β-1,2鍵結之醣鏈。了解Bgl1在水解位點上具有特殊性,不同於文獻中指出β-glucosidase對於皂苷上O-linked糖基水解能力差之特性,顯示Bgl1未來可應用於水解不同苷元型態之植物功效性成分。 | zh_TW |
| dc.description.abstract | Saponins are secondary metabolites of plants, and commonly exist as glycosyl forms. Microbial biotransformation is a useful way to remove the glycosyl group for improving the flavor and producing the bioactive compounds in foods. Our previous studies indicated that yeasts and lactic acid bacteria had limited capacity to convert the bitter melon saponins. In contrast, yeast Kluyveromyces marxianus could be able to transform momordicoside L to antidiabetic compound 3β, 7β, 25 -trihydroxycucurbita-5,23(E)-dien-19-al (THC). Besides, it was observed that β-glucosidase (Bgl1) in K.marxianus was the putative protein for conversion. Here, we provide further evidence to demonstrate that Bgl1 is the target protein for bitter melon saponins transformation. We also characterize substrate specificity by purified Bgl1 protein. The results demonstrate that Bgl1 hydrolyzes broad spectrum of glycones, including coumarins derivative, flavonoids and tetracyclic triterpenes. In addition, this enzyme performs the hydrolysis on both the β-linked O-glycosyl bond of above stated glycosides and β-1,6 glycosidic bond in mogrosides. In conclusion, we characterized the function and substrate specificity of Bgl1 enzyme which may be valuable for bioactive compound production in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:42:44Z (GMT). No. of bitstreams: 1 U0001-2807202023203400.pdf: 4951635 bytes, checksum: 832934bd3917cd6e25b38d9ddb08f797 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 第一章、 前言 1 第二章、 文獻回顧 2 第一節、酵母菌特性介紹 2 第二節、β-葡萄糖苷水解酶 3 一、Glycoside hydrolase family 3 (GH3) 4 二、酵母菌K.marxianus中的β-葡萄糖苷水解酶 6 第三節、生物轉換 7 一、香豆素衍生物 7 二、黃酮類化合物 8 三、羅漢果皂苷 8 四、苦瓜皂苷 9 第四節、酵素受質特異性(substrate specificity) 12 第三章、研究目的與實驗架構 15 第四章、材料與方法 17 第一節、實驗材料 17 一、山苦瓜 17 二、羅漢果皂苷萃取物 (Lo Han Kuo extracts, LHK extracts) 17 三、酵母菌菌株 17 四、質體 17 五、引子 17 六、藥品與試劑 21 第二節、儀器設備 23 一、實驗耗材 23 二、一般儀器設備 23 三、套裝軟體 24 第三節、實驗方法 25 一、菌株特性測試 25 二、酵母菌對皂苷之生物轉換 27 三、Bgl1蛋白表現及活性測試 35 第五章、結果與討論 42 第一節、K.marxianus細胞對苦瓜皂苷的轉換 42 一、K.marxianus細胞於苦瓜萃取物培養液中生長及存活狀況 42 二、不同培養液對於酵母菌外泌蛋白組成的影響 47 三、K.marxianus於苦瓜萃取物培養液中皂苷轉換能力 50 四、以S. cerevisiae系統表現Bgl1蛋白 52 五、以基因突變菌株轉換苦瓜皂苷 58 第二節、探討β-葡萄糖苷水解酶(Bgl1)水解特性 64 一、β-葡萄糖苷水解酶(Bgl1)之蛋白表現及活性 64 二、Bgl1蛋白之受質特異性 72 第六章、結論與展望 96 第七章、參考文獻 97 第八章、附錄 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | O-linked醣基 | zh_TW |
| dc.subject | 苦瓜皂苷 | zh_TW |
| dc.subject | β-glucosidase | zh_TW |
| dc.subject | 受質水解特異性 | zh_TW |
| dc.subject | substrate specificity | en |
| dc.subject | β-linked O-glycosyl bond | en |
| dc.subject | bitter melon saponins | en |
| dc.subject | β-glucosidase | en |
| dc.title | 探討酵母菌中β-葡萄糖苷酶之特性及受質水解特異性 | zh_TW |
| dc.title | Characterization and substrate specificity of a yeast β-glucosidase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂廷璋(Ting-Jang Lu),陳宏彰(Hong-Jhang Chen),陳勁初(Chin-Chu Chen),邱群惠(Chun-Hui Chiu),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 苦瓜皂苷,β-glucosidase,受質水解特異性,O-linked醣基, | zh_TW |
| dc.subject.keyword | bitter melon saponins,β-glucosidase,substrate specificity,β-linked O-glycosyl bond, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU202002004 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202023203400.pdf 未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
