Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76843
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成(Kuan-Chen Cheng)
dc.contributor.authorChi-Mei Liuen
dc.contributor.author劉綺梅zh_TW
dc.date.accessioned2021-07-10T21:38:22Z-
dc.date.available2021-07-10T21:38:22Z-
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation行政院農業委員會 (2013) 靈芝與其有機栽培。
行政院衛生福利部食品藥物管理署 (1990) 市售化粧品,經檢驗含有Hydroquinone成分,不論其含量均列屬藥品管理。79.02.28衛署藥字第854964號公告。
行政院衛生福利部食品藥物管理署 (2016) 打破美白化妝品迷思。藥物食品安全週報。第 580 期,1-2。
沈明來 (2014) 試驗設計學 = Experimental Designs。第五版。九州圖書文物有限公司。臺北,臺灣。
呂佳慧、黃守潔、曾素香、王德原 (2018) 市售化粧品中美白成分之品質監測。食品藥物研究年報, (9), 270-275。
林志虎 (2008) 含七白膏複方萃取物化妝品之抗老化與美白有效性評估。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
林詩涵 (2014) 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性。國立中興大學食品暨應用生物科技學系碩士學位論文。臺中,臺灣。
林芷晴 (2017) 評估臺灣紫芝胞外多醣體抑制肺腫瘤之效果與機制。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
吳亭瑤 (2003) 現代靈芝怎麼栽。健康靈芝,夏季號。
吳書裴 (2016) 利用 PCS 生物反應器最適化生產紫芝胞外多醣與其抗發炎能力之探討。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
許妤安 (2019) 評估臺灣紫芝萃取物於 PM2.5 誘發 ROS 及細胞傷害之保護效果。國立臺灣大學生物資源暨農學院生物科技研究所碩士學位論文。臺北,臺灣。
許瑞祥 (1999) 靈芝的人工栽培技術。<<健康靈芝>> 第 5 期,12-15。
許瑞祥 (2010) 何謂靈芝?<<2010靈芝概論>>,16-19, 241
許瑞祥 (2012) 大師觀點-靈芝保健的科技發展。科學研習,51-10。
黃姿蓉 (2015) 以液態發酵生產韋伯靈芝 (Ganoderma weberianum) 菌絲體及其萃取物對於黑色素生成之影響。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
楊榮韶 (2015) 利用穀物固態培養靈芝菌絲體及分析發酵產物之活性物質。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
廖竣傑 (2016) 探討山竹果殼 α – Mangostin 的美白作用機轉之研究。弘光科技大學化妝品科技研究所。臺中,臺灣。
簡則宇 (2018) 以固態發酵開發機能性臺灣藜產品。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
蘇慶華 (2010) 多樣的化學構型,造就靈芝三萜類豐富的生理活性。健康靈芝,47,6-11。
Akihisa, T., Nakamura, Y., Tagata, M., Tokuda, H., Yasukawa, K., Uchiyama, E., Suzuki, T., Kimura, Y. (2007). Anti‐inflammatory and anti‐tumor‐promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chemistry biodiversity, 4(2), 224-231.
Alam, N., Yoon, K. N., Lee, J. S., Cho, H. J., Lee, T. S. (2012). Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi journal of biological sciences, 19(1), 111-118.
Alam, N., Yoon, K. N., Lee, K. R., Shin, P. G., Cheong, J. C., Yoo, Y. B., Shim, M. J., Lee, M. W., Lee, U. Y., Lee, T. S. (2010). Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology, 38(4), 295-301.
Alam, N., Yoon, K. N., Lee, T. S. (2011). Evaluation of the antioxidant and antityrosinase activities of three extracts from Pleurotus nebrodensis fruiting bodies. African Journal of Biotechnology, 10(15), 2978-2986.
Bishop, K. S., Kao, C. H., Xu, Y., Glucina, M. P., Paterson, R. R. M., Ferguson, L. R. (2015). From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 114, 56-65.
Boh, B., Berovic, M., Zhang, J., Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnology annual review, 13, 265-301.
Cör, D., Knez, Ž., Knez Hrnčič, M. (2018). Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules, 23(3), 649.
Cai, Q., Li, Y., Pei, G. (2017). Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. Journal of neuroinflammation, 14(1), 63.
Camp, E., Lardelli, M. (2001). Tyrosinase gene expression in zebrafish embryos. Development Genes Evolution, 211(3).
Cha, J. Y., Yang, H. J., Moon, H. I., Cho, Y. S. (2012). Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells. Immunopharmacology and immunotoxicology, 34(2), 256-264.
Chan, G. C. F., Chan, W. K., Sze, D. M. Y. (2009). The effects of β-glucan on human immune and cancer cells. Journal of hematology oncology, 2(1), 1-11.
Chang, C. J., Lin, C. S., Lu, C. C., Martel, J., Ko, Y. F., Ojcius, D. M., Tseng, S. F., Wu, T. R., Chen, Y. Y. M., Young, J. D. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature communications, 6(1), 1-19.
Chang, T. S. (2009). An updated review of tyrosinase inhibitors. International journal of molecular sciences, 10(6), 2440-2475.
Chang, T. T., Chen, T. (1984). Ganoderma formosanum sp. nov. on Formosan sweet gum in Taiwan. Transactions of the British Mycological Society, 82(4), 731-733.
Chen, M. L., Hsieh, C. C., Chiang, B. L., Lin, B. F. (2015). Triterpenoids and polysaccharide fractions of Ganoderma tsugae exert different effects on antiallergic activities. Evidence-Based Complementary and Alternative Medicine, 2015.
Chen, S. Y., Chang, C. L., Chen, T. H., Chang, Y. W., Lin, S. B. (2016). Colossolactone H, a new Ganoderma triterpenoid exhibits cytotoxicity and potentiates drug efficacy of gefitinib in lung cancer. Fitoterapia, 114, 81-91.
Cheng, C. R., Yue, Q. X., Wu, Z. Y., Song, X. Y., Tao, S. J., Wu, X. H., Xu, P. P., Liu, X., Guan, S. H., Guo, D. A. (2010). Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry, 71(13), 1579-1585.
Chiang, C. Y., Hsu, K. D., Lin, Y. Y., Hsieh, C. W., Liu, J. M., Lu, T. Y., Cheng, K. C. (2020). The Antiproliferation Activity of Ganoderma formosanum Extracts on Prostate Cancer Cells. Mycobiology, 1-9.
Chien, C. C., Tsai, M. L., Chen, C. C., Chang, S. J., Tseng, C. H. (2008). Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia, 166(2), 117.
Chung, K. W., Jeong, H. O., Lee, E. K., Kim, S. J., Chun, P., Chung, H. Y., Moon, H. R. (2018). Evaluation of antimelanogenic activity and mechanism of galangin in silico and in vivo. Biological and Pharmaceutical Bulletin, 41(1), 73-79.
Cichorek, M., Wachulska, M., Stasiewicz, A., Tymińska, A. (2013). Skin melanocytes: biology and development. Advances in Dermatology and Allergology/Postȩpy Dermatologii I Alergologii, 30(1), 30.
Cui, M. L., Yang, H. Y., He, G. Q. (2015). Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS. Journal of Zhejiang University-SCIENCE B, 16(12), 998-1010.
D’Mello, S. A., Finlay, G. J., Baguley, B. C., Askarian-Amiri, M. E. (2016). Signaling pathways in melanogenesis. International Journal of Molecular Sciences, 17(7), 1144.
Delevoye, C. (2014). Melanin transfer: the keratinocytes are more than gluttons. Journal of Investigative Dermatology, 134(4), 877-879.
Draelos, Z. D. (2007). Skin lightening preparations and the hydroquinone controversy. Dermatologic Therapy, 20(5), 308-313.
Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. L., Stainier, D. Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., Boggs, C. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 123(1), 37-46.
Dudhgaonkar, S., Thyagarajan, A., Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International Immunopharmacology, 9(11), 1272-1280.
Ebanks, J. P., Wickett, R. R., Boissy, R. E. (2009). Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. International Journal of Molecular Science, 10(9), 4066-4087.
Ekandjo, L. K., Chimwamurombe, P. M. (2012). Genetic Diversity of Ganoderma Species in the North Eastern Parts of Namibia using Random Amplified Microsatellites (RAMS). Journal of Pure and Applied Microbiology, 6(3), 1097-1104.
Fan, S., Huang, X., Wang, S., Li, C., Zhang, Z., Xie, M., Nie, S. (2018). Combinatorial usage of fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum ameliorate drug-induced liver injury in mice. Food and Chemical Toxicology, 119, 66-72.
Fang, Q. H., Zhong, J. J. (2002). Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochemical Engineering Journal, 10(1), 61-65.
Fang, Q. H., Zhong, J. J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37(7), 769-774.
Fang, Q. H., Zhong, J. J. (2002). Two‐stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnology Progress, 18(1), 51-54.
Ferreira, I. C., Heleno, S. A., Reis, F. S., Stojkovic, D., Queiroz, M. J. R., Vasconcelos, M. H., Sokovic, M. (2015). Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 114, 38-55.
Fraga, I., Coutinho, J., Bezerra, R. M., Dias, A. A., Marques, G., Nunes, F. M. (2014). Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydrate Polymers, 111, 936-946.
Gao, J., Leung, K. S., Wang, Y., Lai, C., Li, S., Hu, L., Lu, G., Jiang, Z., Yu, Z. (2007). Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC–DAD-MS. Journal of Pharmaceutical and Biomedical Analysis, 44(3), 807-811.
Hajjaj, H., Macé, C., Roberts, M., Niederberger, P., Fay, L. B. (2005). Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Applied and Environmental Microbiology, 71(7), 3653-3658.
Hapsari, R., Elya, B., Amin, J. (2012). Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. International Journal of Medicinal and Aromatic Plants, 2(1), 135-140.
Hasnat, M., Pervin, M., Lim, B. O. (2013). Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice. Molecules, 18(6), 6663-6678.
Hsieh, C., Yang, F. C. (2004). Reusing soy residue for the solid-state fermentation of Ganoderma lucidum. Bioresource Technology, 91(1), 105-109.
Hsu, K. D., Chan, Y. H., Chen, H. J., Lin, S. P., Cheng, K. C. (2018). Tyrosinase-based TLC Autography for anti-melanogenic drug screening. Scientific reports, 8(1), 1-10.
Hsu, K. D., Chen, H. J., Wang, C. S., Lum, C. C., Wu, S. P., Lin, S. P., Cheng, K. C. (2016). Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Scientific reports, 6(1), 1-9.
Hsu, K. D., Wu, S. P., Lin, S. P., Lum, C. C., Cheng, K. C. (2017). Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling. Journal of Food and Drug Analysis, 25(4), 804-811.
Hsu, K. D., Cheng, K. C. (2018). From nutraceutical to clinical trial: frontiers in Ganoderma development. Applied Microbiology and Biotechnology, 102(21), 9037-9051.
Hu, S., Zheng, Z., Zhang, X., Chen, F., Wang, M. (2015). Oxyresveratrol and trans-dihydromorin from the twigs of Cudrania tricuspidata as hypopigmenting agents against melanogenesis. Journal of Functional Foods, 13, 375-383.
Huang, H. C., Hsu, T. F., Chao, H. L., Chen, C. C., Chiu, S. W., Chang, T. M. (2014). Inhibition of melanogenesis in murine melanoma cells by Agaricus brasiliensis methanol extract and anti-reactive oxygen species (ROS) activity. African Journal of Microbiology Research, 8(6), 519-524.
Huang, S., Mao, J., Ding, K., Zhou, Y., Zeng, X., Yang, W., Wang, P., Zhao, C., Yao, J. Xia, P., Pei, G. (2017). Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer's disease. Stem Cell Reports, 8(1), 84-94.
Huang, S. Y., Chien, C. C., Hseu, R. S., Huang, V. Y. J., Chiang, S. Y., Huang, C. J., Chen, S. K., Tsai, R. Y., Lin, H. T., Cheng, Y. C. (2018). Ganoderma microsporum immunomodulatory protein induces apoptosis and potentiates mitomycin C‐induced apoptosis in urinary bladder urothelial carcinoma cells. Journal of Cellular Biochemistry, 119(6), 4592-4606.
Huie, C. W., Di, X. (2004). Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. Journal of Chromatography B, 812(1-2), 241-257.
Jones, S., Janardhanan, K. K. (2000). Antioxidant and antitumor activity of Ganoderma lucidum (Curt.: Fr.) P. Karst.—Reishi (Aphyllophoromycetideae) from South India. International Journal of Medicinal Mushrooms, 2(3).
Jung, H. G., Kim, H. H., Paul, S., Jang, J. Y., Cho, Y. H., Kim, H. J., Yu, J. M., Lee, E. S., An, B. J., Kang, S. C., Bang, B. H. (2015). Quercetin-3-O-β-d-glucopyranosyl-(1→ 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells. Saudi Journal of Biological Sciences, 22(6), 706-713.
Kang, D., Mutakin, M., Levita, J. (2015). Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors. International Journal of Chemistry, 7(1), 62.
Kim, J. W., Kim, H. I., Kim, J. H., Kwon, O., Son, E. S., Lee, C. S., Park, Y. J. (2016). Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. International Journal of molecular Sciences, 17(11), 1798.
Kim, Y. J. (2007). Antimelanogenic and antioxidant properties of gallic acid. Biological and Pharmaceutical Bulletin, 30(6), 1052-1055.
Kino, K., Yamashita, A., Yamaoka, K., Watanabe, J., Tanaka, S., Ko, K., Shimizu, K., Tsunoo, H. (1989). Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. Journal of Biological Chemistry, 264(1), 472-478.
Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P., Van Griensven, L. J. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry, 129(4), 1667-1675.
Lai, Y. J., Hsu, K. D., Huang, T. J., Hsieh, C. W., Chan, Y. H., Cheng, K. C. (2019). Anti-Melanogenic Effect from Submerged Mycelial Cultures of Ganoderma weberianum. Mycobiology, 47(1), 112-119.
Langheinrich, U. (2003). Zebrafish: a new model on the pharmaceutical catwalk. Bioessays, 25(9), 904-912.
Li, A., Shuai, X., Jia, Z., Li, H., Liang, X., Su, D., Guo, W. (2015). Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. Journal of Translational Medicine, 13(1), 100.
Li, Q., Wang, X., Chen, Y., Lin, J., Zhou, X. (2010). Cytokines expression induced by Ganoderma sinensis fungal immunomodulatory proteins (FIP-gsi) in mouse spleen cells. Applied Biochemistry and Biotechnology, 162(5), 1403-1413.
Liao, S.-F., Liang, C.-H., Ho, M.-Y., Hsu, T.-L., Tsai, T.-I., Hsieh, Y. S.-Y., Tsai, C. M., Li, S. T., Cheng, Y. Y., Tsao, S. M., Lin, T. Y., Lin, Z. Y., Yang, W. B., Ren, C. T., Lin, K. I., Khoo, K. H., Lin, C. H., Hsu, H. Y., Wu, C. Y., Wong, C. H. (2013). Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proceedings of the National Academy of Sciences, 110(34), 13809-13814.
Likhitwitayawuid, K., Sritularak, B. (2001). A New Dimeric Stilbene with Tyrosinase Inhibitiory Activity From Artocarpus gomezianus. Journal of Natural Products, 64(11), 1457-1459.
Lin, J.-M., Lin, C. C., Chen, M. F., Ujiie, T., Takada, A. (1995). Radical scavenger and antihepatotoxic activity of Ganoderma formosanum, Ganoderma lucidum and Ganoderma neo-japonicum. Journal of Ethnopharmacology, 47(1), 33-41.
Liu, C., Dunkin, D., Lai, J., Song, Y., Ceballos, C., Benkov, K., Li, X. M. (2015a). Anti-inflammatory effects of Ganoderma lucidum triterpenoid in human crohn's disease associated with downregulation of NF-κB signaling. Inflammatory bowel diseases, 21(8), 1918-1925.
Liu, C., Yang, N., Song, Y., Wang, L., Zi, J., Zhang, S., Dunkin, D., Busse, P., Weir, D., Tversky, J., Miller, R. L., Goldfarb, J., Zhan, J., Li, X. M. (2015b). Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI™ suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. International Immunopharmacology, 27(2), 224-231.
Meng, L. Z., Xie, J., Lv, G. P., Hu, D. J., Zhao, J., Duan, J. A., Li, S. P. (2014). A Comparative Study on Immunomodulatory Activity of Polysaccharides from Two Official Species of Ganoderma (Lingzhi). Nutrition and Cancer, 66(7), 1124-1131.
Meng, T. X., Furuta, S., Fukamizu, S., Yamamoto, R., Ishikawa, H., Arung, E. T., Shimizu, K., Ohga, S., Kondo, R. (2011). Evaluation of biological activities of extracts from the fruiting body of Pleurotus citrinopileatus for skin cosmetics. Journal of Wood Science, 57(5), 452-458.
Miyake, M., Yamamoto, S., Sano, O., Fujii, M., Kohno, K., Ushio, S., Iwaki, K., Fukuda, S. (2010). Inhibitory effects of 2-Amino-3 H-phenoxazin-3-one on the melanogenesis of murine B16 melanoma cell line. Bioscience, Biotechnology, and Biochemistry, 74(4), 753-758.
Mukaiyama, T., Tsujimura, N., Otaka, S., Kosaka, Y., Hata, K., Hori, K., Sakamoto, K. (2008). Anti-melanogenic activity of ergosterol peroxide from Ganoderma lucidum on a mouse melanoma cell line. In Animal Cell Technology: Basic Applied Aspects (pp. 273-277).
Munoz-Munoz, J. L., García-Molina, F., Varón, R., Tudela, J., García-Cánovas, F., Rodríguez-López, J. N. (2009). Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794(7), 1017-1029.
Oh, E. Y., Jang, J. Y., Choi, Y. H., Choi, Y. W., Choi, B. T. (2010). Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells. Journal of Ethnopharmacology, 132(1), 219-224.
Park, K. M., Kwon, K. M., Lee, S. H. (2015). Evaluation of the antioxidant activities and tyrosinase inhibitory property from mycelium culture extracts. Evidence-based Complementary and Alternative Medicine, 2015.
Paterson, R. R. M. (2006). Ganoderma–a therapeutic fungal biofactory. Phytochemistry, 67(18), 1985-2001.
Pi, C. C., Chu, C. L., Lu, C. Y., Zhuang, Y. J., Wang, C. L., Yu, Y. H., Wang, H. Y., Lin, C. C., Chen, C. J. (2014). Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine, 32(3), 401-408.
Pi, C. C., Wang, H. Y., Lu, C. Y., Lu, F. L., Chen, C. J. (2014). Ganoderma formosanum polysaccharides attenuate Th2 inflammation and airway hyperresponsiveness in a murine model of allergic asthma. SpringerPlus, 3(1), 297.
Picardo, M., Carrera, M. (2007). New and experimental treatments of cloasma and other hypermelanoses. Dermatologic Clinics, 25(3), 353-362.
Seo, S. Y., Sharma, V. K., Sharma, N. (2003). Mushroom tyrosinase: recent prospects. Journal of Agricultural and Food Chemistry, 51(10), 2837-2853.
Sharma, C., Bhardwaj, N., Sharma, A., Tuli, H. S., Batra, P., Beniwal, V., Gupta, G. K., Sharma, A. K. (2019). Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. Journal of Herbal Medicine, 17, 100268.
Shimizu, A., YANo, T., SAITO, Y., INADA, Y. (1985). Isolation of an inhibitor of platelet aggregation from a fungus, Ganoderma lucidum. Chemical and Pharmaceutical Bulletin, 33(7), 3012-3015.
Singh, I. P., Bharate, S. B., Bhutani, K. K. (2005). Anti-HIV natural products. Current Science, 89(2), 269-290.
Smit, N., Vicanova, J., Pavel, S. (2009). The hunt for natural skin whitening agents. International Journal of Molecular Sciences, 10(12), 5326-5349.
Sun, L. X., Lin, Z. B., Lu, J., Li, W. D., Niu, Y. D., Sun, Y., Hu, C. Y., Zhang, G. Q., Duan, X. S. (2017). The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunologic Research, 65(3), 658-665.
Sun, X., Wang, H., Han, X., Chen, S., Zhu, S., Dai, J. (2014). Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydrate Polymers, 114, 432-439.
Tang, Y. J., Zhong, J. J. (2002). Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidum, grown on lactose in a bioreactor. Biotechnology Letters, 24(12), 1023-1026.
Tang, Y. J., Zhong, J. J. (2002). Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 31(1-2), 20-28.
Taofiq, O., González-Paramás, A. M., Martins, A., Barreiro, M. F., Ferreira, I. C. (2016). Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 90, 38-48.
Taofiq, O., Heleno, S. A., Calhelha, R. C., Alves, M. J., Barros, L., González-Paramás, A. M., Ferreira, I. C. (2017). The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 108, 139-147.
Uchida, R., Ishikawa, S., Tomoda, H. (2014). Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol. Acta Pharmaceutica Sinica B, 4(2), 141-145.
Wagner, R., Mitchell, D. A., Lanzi Sassaki, G., Lopes de Almeida Amazonas, M. A., Berovič, M. (2003). Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technology and Biotechnology, 41(4), 371-382.
Wang, C. L., Lu, C. Y., Hsueh, Y. C., Liu, W. H., Chen, C. J. (2014a). Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Applied Microbiology and Biotechnology, 98(22), 9389-9398.
Wang, C. L., Lu, C. Y., Pi, C. C., Zhuang, Y. J., Chu, C. L., Liu, W. H., Chen, C. J. (2012). Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complementary and Alternative Medicine, 12(1), 119.
Wang, C. L., Pi, C. C., Kuo, C. W., Zhuang, Y. J., Khoo, K. H., Liu, W. H., Chen, C. J. (2011). Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnology Letters, 33(11), 2271.
Wang, J., Yuan, Y., Yue, T. (2014b). Immunostimulatory activities of β-D-glucan from Ganoderma lucidum. Carbohydrate polymers, 102, 47-54.
Tung, N. T., Cuong, T. D., Hung, T. M., Kim, J. A., Woo, M. H., Choi, J. S., Lee, J. H., Min, B. S. (2015). Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochemistry Letters, 12, 69-74.
Wu, J. G., Kan, Y. J., Wu, Y. B., Yi, J., Chen, T. Q., Wu, J. Z. (2016). Hepatoprotective effect of ganoderma triterpenoids against oxidative damage induced by tert-butyl hydroperoxide in human hepatic HepG2 cells. Pharmaceutical Biology, 54(5), 919-929.
Xia, Q., Zhang, H., Sun, X., Zhao, H., Wu, L., Zhu, D., Yang, G., Shao, Y., Zhang, X., Mao, X., Zhang, L., She, G. (2014). A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules, 19(11), 17478-17535.
Xu, P., Ding, Z. Y., Qian, Z., Zhao, C. X., Zhang, K. C. (2008). Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme and Microbial Technology, 42(4), 325-331.
Yan, Z. F., Yang, Y., Tian, F. H., Mao, X. X., Li, Y., Li, C. T. (2014). Inhibitory and acceleratory effects of Inonotus obliquus on tyrosinase activity and melanin formation in B16 melanoma cells. Evidence-based Complementary and Alternative Medicine, 2014.
Yang, F. C., Liau, C. B. (1998). Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Engineering, 19(3), 233-236.
Yoon, K. N., Alam, N., Lee, J. S., Lee, K. R., Lee, T. S. (2011a). Detection of phenolic compounds concentration and evaluation of antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus edodes. World Applied Sciences Journal, 12(10), 1851-1859.
Yoon, K. N., Alam, N., Lee, K. R., Shin, P. G., Cheong, J. C., Yoo, Y. B., Lee, T. S. (2011b). Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules, 16(3), 2334-2347.
Yu, C., Fu, J., Guo, L., Lian, L., Yu, D. (2020). UPLC-MS-based serum metabolomics reveals protective effect of Ganoderma lucidum polysaccharide on ionizing radiation injury. Journal of Ethnopharmacology, 258, 112814.
Zhang, L., Ding, Z., Xu, P., Wang, Y., Gu, Z., Qian, Z., Shi, G., Zhang, K. (2011). Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganoderma lucidum is a novel tyrosinase inhibitor. Biotechnology and Bioprocess Engineering, 16(3), 457-461.
Zhang, W., Tao, J., Yang, X., Yang, Z., Zhang, L., Liu, H., Wu, K., Wu, J. (2014). Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochemical and Biophysical Research Communications, 449(3), 307-312.
Zhu, K. X., Nie, S. P., Tan, L. H., Li, C., Gong, D. M., Xie, M. Y. (2016). A polysaccharide from Ganoderma atrum improves liver function in type 2 diabetic rats via antioxidant action and short-chain fatty acids excretion. Journal of Agricultural and Food Chemistry, 64(9), 1938-1944.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76843-
dc.description.abstract靈芝已被證實具有抑制酪胺酸酶的活性。臺灣紫芝 (Ganoderma formosanum) 為臺灣特有種靈芝,已有文獻證實其菌絲體酒精萃取物之乙酸乙酯劃分層 (GFE-EA),會透過抑制酪胺酸酶活性來顯著減少黑色素生成,達到與麴酸相似的美白效果。本實驗期望能通過生產條件的優化,提升菌絲體中酒精萃取物的美白活性。本實驗將利用液態深層發酵培養不同因子的菌絲體 (天數、不同碳源及濃度、起始 pH 值和溫度) 並以酒精萃取後,以酪胺酸酶比色法來進行粗萃物美白活性測定。根據單因子試驗結果,以 5 種不同濃度的葡萄糖、果糖、乳糖和蔗糖做為碳源進行培養,其中以 50 g/L 乳糖作為碳源得到的酪胺酸酶抑制率最高,而不同起始 pH 值及培養溫度的菌絲體產物皆具有酪胺酸酶抑制活性。最終選擇以 50 g/L 乳糖作為碳源、調整 pH 值為 7,在 25oC 下培養 9 天作為優化之生產條件進行培養,並將收成之菌絲體以酒精萃取得到粗萃物。在小鼠黑色素瘤細胞 (B16-F0) 實驗中,含有 0.1 mg/mL 粗萃物的培養液組別,細胞內黑色素含量會減少為控制組的 76%;在斑馬魚動物實驗中,斑馬魚胚在與含有 0.05 mg/mL 粗萃物的培養液反應 2 天後,斑馬魚胚內黑色素含量會減少為控制組的 62%。在斑馬魚表徵拍照中,可明顯觀察到體表黑色素生成的減少。經本實驗優化培養條件得到之臺灣紫芝菌絲體亦具有美白活性,可提供未來挑選最適化培養美白活性成分條件之基礎及相關研究之進行。zh_TW
dc.description.abstractGanoderma has been shown to have tyrosinase inhibitory activity. Ganoderma formosanum was an endemic species found in Taiwan. Recently, research showed that the ethyl acetate fraction of G. formosanum mycelium ethanolic extract (GFE-EA) can significantly reduce melanin production by inhibiting tyrosinase activity, achieving a skin-lightening effect similar to kojic acid. The aim of this experiment is to improve the skin-lightening activity of the alcohol extract in the mycelium through the optimization the production conditions. In this experiment, submerged fermentation will be used to cultivate mycelia of different factors (days, different carbon sources and concentrations, initial pH value and temperature), and then the mycelia were extracted with ethanol, and the skin-lightening activity was assessed by colorimetric screening assays. According to the single factor test results, five different concentrations of glucose, fructose, lactose and sucrose were used as a carbon source for the cultivation. Among them, 50 g/L lactose obtained the highest inhibition rate of tyrosinase. and the mycelium products with different initial pH and cultivation temperature show tyrosinase inhibition activity. Finally, 50 g/L lactose was selected as the carbon source, the pH value was adjusted to 7, and cultured at 25oC for 9 days as the optimized production conditions, then cultivating, extracting the alcohol extract of the mycelium of the harvest, and confirmed to be using melanoma cell and zebrafish animal platforms. In the mouse melanoma cell (B16F0) experiment, the intracellular melanin content reduced to 76% of the control group in 0.1 mg/mL crude extract group; while the melanin content in the zebrafish embryo could be reduced to 62% of the control group in 0.05 mg/mL crude extract group under 2-day treatment. For the body pigmentation of zebrafish, a reduction in melanin production on the body surface can be clearly observed under microscopy. The G. formosanum mycelium obtained by optimizing the cultivation conditions in this experiment can provide the basis for selecting the optimal conditions for cultivating the whitening active ingredients in the future.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:38:22Z (GMT). No. of bitstreams: 1
U0001-1308202022492600.pdf: 3591604 bytes, checksum: f815a12d89e3974e0af2bc28c7f548c7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 I
縮寫 (全名對照) 表 III
摘要 IV
Abstract V
目錄 VII
圖目錄 X
表目錄 XII
壹、前言 1
貳、文獻回顧 2
2.1 靈芝介紹 2
2.1.1靈芝分類及特徵 3
2.1.2靈芝的生長與栽培 4
2.1.3靈芝生長環境影響 7
2.1.4靈芝生理活性及其活性成分 8
2.2 臺灣紫芝 (Ganoderma formosanum) 17
2.2.1臺灣紫芝簡介 17
2.2.2臺灣紫芝生理活性 18
2.3 皮膚黑色素生合成之機制及美白成分概述 19
2.3.1黑色素生合成機制 19
2.3.2美白機制與美白成分概述 23
2.3.3全球化妝品市場之趨勢 26
2.4 美白活性確效方法 30
2.4.1酪胺酸酶抑制作用 30
2.4.2黑色素生成抑制試驗 30
參、研究目的與實驗架構 32
3.1 研究目的 32
3.2 實驗架構 32
肆、材料與方法 35
4.1 臺灣紫芝菌絲體之發酵生產 35
4.1.1實驗材料 35
4.1.2實驗設備 37
4.1.3實驗方法 38
4.2 美白活性生產策略 41
4.2.1最適培養天數之選擇 41
4.2.2培養基配方之選擇 41
4.2.3培養基起始 pH 值之選擇 42
4.2.4培養溫度之選擇 42
4.3 臺灣紫芝菌絲體之美白活性評估 42
4.3.1. 實驗材料 42
4.3.2 實驗設備 45
4.3.3 實驗方法 45
伍、結果與討論 53
5.1 優化培養條件之單因子試驗探討 53
5.1.1 臺灣紫芝菌絲體生長曲線與其美白活性變化趨勢 53
5.1.2最適培養基起始 pH 值探討 56
5.1.3最適碳源及濃度之探討 59
5.1.4最適培養溫度之探討 70
5.1.5單因子優化結果 73
5.2 探討臺灣紫芝菌絲體粗萃物對黑色素瘤細胞之美白效果 74
5.2.1臺灣紫芝菌絲體粗萃物對 B16-F0細胞存活率之影響 74
5.2.2臺灣紫芝菌絲體粗萃物處理對 B16-F0 胞內黑色素含量之影響 76
5.3 探討臺灣紫芝菌絲體粗萃物對斑馬魚之美白效果 78
5.3.1臺灣紫芝菌絲體粗萃物對斑馬魚胚之毒性測試 78
5.3.2粗萃物處理對斑馬魚胚胎黑色素含量之影響 80
陸、結論與未來展望 82
柒、參考文獻 83
捌、附錄 XVII
dc.language.isozh-TW
dc.subject美白活性zh_TW
dc.subject酪胺酸酶zh_TW
dc.subject臺灣紫芝zh_TW
dc.subject菌絲體zh_TW
dc.subjecttyrosinaseen
dc.subjectGanoderma formosanumen
dc.subjectmyceliumen
dc.subjectskin-lightening activityen
dc.title最適化生產具美白活性之臺灣紫芝菌絲體zh_TW
dc.titleOptimization for Ganoderma formosanum mycelium production with skin-lightening activityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝昌衛(Chang-Wei Hsieh),蔡宗佑(Tsung-Yu Tsai),張祐維(Yu-Wei Chang),徐慶琳(Chin-Lin Hsu),陳與國(Yu-Kuo Chen)
dc.subject.keyword臺灣紫芝,菌絲體,美白活性,酪胺酸酶,zh_TW
dc.subject.keywordGanoderma formosanum,mycelium,skin-lightening activity,tyrosinase,en
dc.relation.page121
dc.identifier.doi10.6342/NTU202003342
dc.rights.note未授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202022492600.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved