Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢
dc.contributor.authorHao-Peng Chengen
dc.contributor.author鄭皓蓬zh_TW
dc.date.accessioned2021-07-10T21:33:34Z-
dc.date.available2021-07-10T21:33:34Z-
dc.date.copyright2017-10-03
dc.date.issued2017
dc.date.submitted2017-05-10
dc.identifier.citation[1]巫振榮,「熱電元件應用」,科普講堂,2013年。
[2]朱旭山,「熱電材料與元件之原理與應用」,工業材料雜誌,2005年。
[3]S.K. Mishra, S. Satpathy, and O. Jepsen, “Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide”, Journal of Physics, Vol.9, No.2, 1997, pp.461-470.
[4]D.K. Qi, Y.G. Yan, H. Li, and X.F. Tang, “Effects of Rapid Solidification Method on Thermoelectric and Mechanical Properties of β-Zn4+xSb3 Materials”, Journal of Inorganic Materials, Vol.25, No.6, 2010, pp.603-608.
[5]C. Okamura, T. Ueda, and K. Hasezaki, “Preparation of Single Phase β-Zn4Sb3 Thermoelectric Materials by Mechanical Grinding Process”, Journal of Materials Transactions, Vol. 51, No. 1, 2010, pp.152-155.
[6]T.J. Seebeck, “Magnetic Polarization of Metals and Minerals”, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Vol.265, 1821, pp.1822-1823.
[7]K. Uchida1, S. Takahashi, K. Harii1, J. Ieda, W. Koshibae, K. Ando1, S. Maekawa, and E. Saitoh1, “Observation of the Spin Seebeck Effect”, Nature, Vol.455, 2008, pp.778-781.
[8]J.C. Peltier, “Nouvelles expériences sur la caloricité des courants électrique”, Annales de Chimie et de Physique, Vol. 56, No.371, pp.1834.
[9]W. Thomson, “On a Mechanical Theory of Thermo-Electric Currents”, Proceedings of the Royal society of Edinburgh, Vol.3, 1857, pp.91-98.
[10]H.J. Goldsmid, and R.W. Douglas, “The Use of Semiconductors in Thermoelectric Refrigeration”, British Journal of Applied Physics, Vol.5, No.11, 1954, pp.386.
[11]Sano, Seijiro, H. Mizukami, and H. Kaibe, “Development of High-Efficiency Thermoelectric Power Generation System”, Komai’su Technical Report, Vol.49, No.152, 2003, pp.1-7.
[12]Y.Y. Qi, Z. Wang, M. Zhang, F. Yang, and X. Wang, “Thermoelectric Devices Based on One-Dimensional Nanostructures”, Journal of Materials Chemistry, Vol.1, 2013, pp.6110-6124.
[13]G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, “Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties”, Nature Materials, Vol.3, 2004, pp.458-463.
[14]T.M. Tritt, “Holey and Unholey Semiconductors”, Nature, Vol.283, 1999, pp.804-805.
[15]S. Bhattacharya, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, and N. Thadhani, “Grain Structure Effects on the Lattice Thermal Conductivity of Ti-Based Half-Heusler Alloys”, Applied Physics Letters, Vol.81, No.1, 2002, pp.42-45.
[16]T. Caillat, and J.P. Fleurial, “Zn-Sb Alloys for Thermoelectric Power Generation”, Energy Conversion Engineering Conference,Vol.2, 1996, pp.905-909.
[17]H.W. Mayer, I. Mikhail, and K. Schubert, “Über Einige Phasen der Mischungen ZnSbN und CdSbN”, Journal of the Less Common Metals, Vol.59, No.1, 1978, pp.43-52.
[18]Official Journal of the European Union, “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003:on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment”, 2003.
[19]黃振東、徐振庭,「熱電材料」,科學發展486期,2013年。
[20]G.J. Snyder, and E.S. Toberer, “Complex Thermoelectric Materials”, Nature Materials, Vol.7, 2008, pp.105-114.
[21]O.M. Akselsen, “Advances in Brazing of Ceramics”, Journals of Materials Science, Vol.27, 1992, pp.1989-2000.
[22]T.B. Massalaski, “Binary Alloy Phase Diagrams”, William W.Scott, Vol. 2, 1986, pp.3016.
[23]D. Gupta, K. Vieregge, W. Gust, “Interface Diffusion in Eutectic Pb-Sn Solder”, Acta Metallurgica, Vol.47, No.1, 1999, pp.5-12.
[24]M. Abtew, G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering, Vol.27, 2000, pp.95-141.
[25]American Welding Society, “Supersedes Brazing Handbook”, Fourth Edition, 1991.
[26]G. Humston, and D.M. Jacobson, “Diffusion Soldering”, Soldering and Surface Mount Technology, Vol.10, 1992, pp.27-32.
[27]T.M. Ritzer, P.G. Lau, and A.D. Bogard, “A Critical Evaluation of Today's Thermoelectric Modules”, Thermoelectrics, 1997, pp.619.
[28]莊東漢,「熱電模組接合技術及其挑戰」,工業材料雜誌,2013年。
[29]T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, “Diffusion Barrier Property of TaN between Si and Cu”, Applied Surface Science, Vol.99, 1996, pp.265-272.
[30]M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, and T. Ohta, “WNx Ddiffusion Barriers between Si and Cu”, Thin Solid Films, Vol.286, 1996, pp.170-175.
[31]M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Characteristics of TiN Barrier Layer Against Cu Diffusion”, Thin Solid Films, Vol.339, 1999, pp.290-293.
[32]T. Laurila, K. Zeng, and J.K. Kivilahti, “Failure Mechanism of Ta Diffusion Barrier between Cu and Si”, Journal of Applied Physics, Vol.88, No.6, 2000, pp.3377-3384.
[33]S. Fujimoto, S. Sano, and T. Kajitani, “Analysis of Diffusion Mechanism of Cu in Polycrystalline Bi2Te3-Based Alloy with the Aging of Electrical Conductivity”, Japanese Journal of Applied Physics, Vol.46, No.8, 2007, pp.5033-5039.
[34]R.N. Hall, and J.H. Racette, “Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide”, Journal of Applied Physics, Vol.35, 1964, pp.379-397.
[35]T. Kacsich, E. Kolawa, J.P. Fleurial, T. Caillat, and M.A. Nicolet, “Films of Ni-7 at%V, Pd, Pt and Ta-Si-N as Diffusion Barriers for Copper on Bi2Te3”, Journal of Physics, Vol.31, No.19, 1998, pp.2406.
[36]I.V. Gasenkova, and T.E. Svechnikova, “Structural and Transport Properties of Sn-Doped Bi2Te3 – xSex Single Crystals”, Journal of Inorganic Materials, Vol.40, 2004, pp.570-575.
[37]Y.C. Lan, D.Z. Wang, and Z.F. Ren, “Diffusion of Nickel and Tin in P-Type (Bi,Sb)2Te3 and N-Type Bi2(Te,Se)3 Thermoelectric Materials”, Applied Physics Letters, Vol.92, 2008, pp.1-3.
[38]H. Wada, K. Takahashi, and T. Nishizaka, “Electroless Nickel Plating to Bi-Te Sintered Alloy and its Properties”, Journal of Materials Science Letters, Vol.9, 1990, pp.810-812.
[39]S.H. Rhee, Y. Du, and P.S. ho, “Thermal Stress Characteristics of Cu/oxide and Cu/Low-k Submicron Interconnect Structures”, Journal of Applied Physics, Vol.93, No.7, 2003, pp.3926-3933.
[40]T. Sato, and K. Kamada, “Thermoelectric Piece and Process of Making the Same”, Patent of US 6083770 A, 2000.
[41]S. Wiese, K.J. Wolter, “Microstructure and Creep Behaviour of Eutectic SnAg and SnAgCu Solders”, Microelectronics Reliability, Vol.44, 2004, pp.1923-1931.
[42]邱垂泓、吳學陞,「非晶質金屬材料簡介」,材料與技術專欄,2014年。
[43]S. Takayama, “Amorphous Structures and Their Formation and Stability”, Journal of Materials Science, Vol.11, 1976, pp.164-185.
[44]W. Klement, R.H. Willens, and P. Duwex, “Non-Crystalline Structure in Solidified Gold-Silicon Alloys”, Nature, Vol.187, 1960, pp.869-870.
[45]C.W. Wang, P. Yiu, J.P. Chu, C.H. Shek, and C.H. Hsueh, “Zr-W-Ti Thin Film Metallic Glass as A Diffusion Barrier between Copper and Silicon”, Journal of Material Science, Vol.50, 2015, pp.2085-2092.
[46]J.C. Chang, J.W. Lee, B.S. Lou, C.L. Li, and J.P. Chu, “Effects of Tungsten Contents on The Microstructure, Mechanical and Anticorrosion Properties of Zr-W-Ti Thin Film Metallic Glasses”, Thin Solid Films, Vol.584, 2015, pp.253-256.
[47]D.K. Gilding, and A.M. Reed, “Biodegradable Polymers for Use in Surgery-Polyglycolic/Poly(Actic Acid) Homo- and Copolymers:1”, Journal of Polymers, Vol.20, 1979, pp.1459-1464.
[48]N. Saunders, and A.P. Miodownlk, “The Cu-Sn (Copper-Tin) System”, Bulletin of Alloy Phase Diagrams, Vol.11, No.3, 1990, pp.278-287.
[49]K.N. Tu, and R.D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol.30, 1982, pp.947-952.
[50]H.K. Kim, K.N. Tu, “Kinetic Analysis of The Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening”, Physical Review, Vol.53, No.23, 1996, pp.27-34.
[51]J.S. Kang, R.A. Gagliano, G. Ghosh, and M.E. Fine, “Isothermal Solidification of Cu/Sn Diffusion Couples to Form Thin-Solder Joints”, Journal of Electronic Materials, Vol.31, No.11, 2002, pp. 1238-1243.
[52]F. Bartels, and J.W. Morris, “Intermetallic Phase Formation in Thin Solid-Liquid Diffusion Couples”, Journal of Electronic Materials, Vol.23, No.8, 1994, pp.787-790.
[53]I. Karakaya, and W.T. Thompson, “The Ag-Sn (Silver-Tin) System”, Bulletin of Alloy Phase Diagrams, Vol.8, No.4, 1987, pp.340-347.
[54]V. Simic, and Z. Marinkovic, “Room Temperature Interactions in Ag-Metals Thin Films Couples”, Thin Solid Films, Vol.61, 1979, pp.149.
[55]Z. Marinkovic, and V. Simic, “Kinetics of Reaction at Room Temperature in Thin Silver-Metal Couple”, Thin Solid Films, Vol.195, 1991, pp.127.
[56]G. Humpston, D.M. Jacobson, and S.P.S. Sangha, “Diffusion Soldering for Electronics Manufacturing”, Endeavour, Vol.18, 1994, pp.55-60.
[57]J.F. Li, P.A. Agyakwa, and C.M. Johnson, “Kinetics of Ag3Sn Growth in Ag–Sn–Ag System during Transient Liquid Phase Soldering Process”, Acta Materialia, Vol.58, 2010, pp.3429-3443.
[58]P. Skrzyniarz, A. Sypien, and J. Wojewoda-Budka, “Microstructure and Kinetics of Intermetallic Phases Growth in Ag/Sn/Ag Join Obtain as The Result of Diffusion Soldering”, Archives of Metallurgy and Materials, Vol.55, 2010, pp.123.
[59]J. Shen, Y.C. Liu, H.X. Gao, C. Wei, and Y.Q. Yang, “Formation of Bulk Ag3Sn Intermetallic Compounds in Sn-Ag Lead-Free Solders in Solidification”, Journal of Electronic Materials, Vol.34, No.12, 2005, 1591-1597.
[60]K. Zeng, and K.N. Tu, “Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering, Vol.38, 2002, pp.55-105.
[61]C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, “Properties of Lead-Free Solder Alloys with Rare Earth Element Additions”, Materials Science and Engineering, Vol.44, 2004, pp.1-44.
[62]K.S. Kim, and S.H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn–Ag–Cu Alloys”, Materials Science and Engineering, Vol.333, 2002, pp106-114.
[63]F. Ochoa, J.J. Williams, and N. Chawla, “The Effects of Cooling Rate on Microstructure and Mechanical Behavior of Sn-3.5 Ag Solder”, Journal of the Minerals, Metals and Materials Society, Vol.55, 2003, pp.56-60.
[64]P. Nash, and A. Nash, “The Ni-Sn (Nickel-Tin) System”, Bulletin of Alloy Phase Diagrams, Vol.6, No.4, 1985, pp.350-359.
[65]W.G. Bader, “Dissolution and Formation on Intermetallics in The Soldering Process”, Proceedings of The Conference on Physical Metallurgy and Metal Joining, St. Louis, MO, Warrendale, USA, Oct. 16-17, 1980.
[66]J.A.V. Beek, S.A. Stolk, and F.J.J.V. Loo, “Multiphase Diffusion in The System Fe-Sn and Ni-Sn”, Zeitschrift Fur Metallkunde, Vol.73, 1982, pp.439.
[67]C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, “The Effect of Limited Cu Supply on The Soldering Reactions between SnAgCu and Ni”, Journal of Electronic Materials, Vol.35, 2006, pp.1017.
[68]H.D. Blair, T.Y. Pan, and J.M. Nicholson, “Intermetallic Compound Growth on Ni, Au/Ni, and Pd/Ni Substrates with Sn/Pb, Sn/Ag, and Sn Solders”, Electronic Components & Technology Conference, 1998, pp.259-267.
[69]C.Y. Lee, and K.L. Lin, “The Interaction Kinetics and Compound Formation between Electroless Ni-P and Solder”, Thin Solid Films, Vol.249, No.2, 1994, pp.201-206.
[70]K.L. Lin, and C.J. Chen, “The Interactions between In-Sn Solders and an Electroless Ni-P Deposit upon Heat Tretment”, Journal of Materials Science: Materials in Electronics, Vol.7, No.6, 1996, pp.397-401.
[71]P.G. Harris, and K.S. Chaggar, “The Role of Intermetallic Compounds in Lead-Free Soldering”, Soldering & Surface Mount Technology, Vol.10, No.3, 1998, pp.38-52.
[72]P. Nash, and Y.Y. Pan, “The Ni-Zn (Nickel-Zinc) System”, Bulletin of Alloy Phase DiagrAms, Vol.8, No.5, 1987, pp.422-430.
[73]G.P. Vassilev, T.G. Acebo, and J.C. Tedenac, “Thermodynamic Optimization of The Ni-Sn System”, J. Phase Equilibria, Vol.21, 2000, pp.287-301.
[74]S. Budurov, G. Vassilev, and N. Kuck: Z. Metallkd, 1978, Vol.68, pp.226.
[75]J. Schramm, “X-Ray Investigation of Phases and Phase Limits of The Zn Alloy Systems with Fe, Co and Ni”, Z. Metallkd, 1938, Vol.30, pp.122.
[76]F. Lihl: Z. Metallkd, 1952, Vol.43, pp.310.
[77]F. Lihl: Z. Metallkd, 1955, Vol.46, pp.438.
[78]A. Malaruka, and V. Melihov: Proc. Nucl. Phys. Inst., Akad. Nauk Kazakh. SSR, 1969, Vol.9, pp.78.
[79]A. Morton: Phys. Status Solidi, 1977, Vol.44, pp.205.
[80]G. Nover, and K. Schubert: J. Less-Common Met., 1980, Vol.75, pp.51.
[81]W. Eckman: Z. Phys. Chem., 1931, Vol.12, pp.57.
[82]C.H. Wang, H.H. Chen, and C.P. Li, “Interfacial Reactions of High-Temperature Zn-Sn Solders with Ni Substrate”, Materials Chemistry and Physics, Vol.136, 2012, pp.325-333.
[83]Y.C. Chan, M.Y. Chiu, and T.H. Chung, “Intermetallic Compounds Formed during The Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates”, Zeitschrift für Metallkunde, Vol.93, 2002, pp.95-98.
[84]C.Y. Chou, S.W. Chen, and Y.S. Chang, “Interfacial Reactions in The Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni Couples”, Journal of. Materials Research, Vol.21, 2006, pp.1849-1856.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76596-
dc.description.abstract非再生能源佔地球上能源消耗之絕大部份,在有限的資源下非再生能源將日益枯竭,為減緩地球資源消耗以及改善人類使用能源的情形,因此綠色能源逐漸受到重視,利用其再生且環保之特色取代非再生能源的使用,熱電材料為其中之一,利用外在環境之溫度差異經由熱電材料本身特性將溫差產生之熱能轉換為電能以達到工業廢熱回收之目的,然而目前商業化熱電模組以Bi2Te3熱電模組為主要產品,其有效工作範圍低於100 ℃,對於更高溫的工業製造溫度環境下因無相對應熱電模組織建立而無法使用熱電材料進行能源再生,為提高熱電材料運作溫度以達到高溫廢熱回收,本研究對於Bi2Te3熱電模組微結構進行探討,瞭解高溫下熱電模組失效之肇因,提出相對應可靠之界面微結構設計,並驗證其可靠度;對於中高溫熱電材料方面,模組化首先須使用有效之擴散阻障層設計,本實驗使用SLID接合製程對於Zn4Sb3熱電材料進行擴散阻障層研究,以建立Zn4Sb3熱電模組結構設計為目標進行研究。
研究結果顯示,Bi2Te3熱電模組因使用銲錫作為接合填料,易於200 ℃發生銲料流失現象,且熱電材料與Ni阻障層間因無預鍍Sn處理導致附著性不足,經改善後以SLID接合之Bi2Te3熱電模組於200℃環境放置1000小時之微結構仍保持完整,可有效提高其工作溫度。對於Zn4Sb3熱電材料,使用結晶以及金屬玻璃之Ni-Pd薄帶進行壓接後界面反應機制不同,IMC層成長速率不一致,金屬玻璃具有擴散阻障層之可行性;針對濺鍍Ti /WTi/Ti金屬薄膜作為擴散阻障層之設計下,於350℃環境下24小時可保有界面完整性且無擴散反應發生,然而因熱膨脹係數差異過大導致接合及高溫環境下有附著性不佳及連續性不足的問題,此為長時間高溫儲存下熱電材料破損之主因。
zh_TW
dc.description.abstractNon-renewable resource is the most of energy consumption in the world. It will be exhausted one day. To improve the use of energy resource, sustainable energy gradually become popular. Thermoelectric material is one of them. It can produce electric energy due to temperature difference, which means transferring thermal energy to electric energy. It can be used in the industrial processing. Nowadays Bi2Te3 thermalelectronic modules are used widely. But they can only worked effectively only below 100℃. For higher temperature environment of processing, the wasted heat can not be recycled. So this investigation contains exploring microstructure of Bi2Te3 thermalelectronic modules, understanding the results of failed samples, and finally improve the working temperature. For Zn4Sb3 thermalelectronic materials, the design of diffusion barrier is the first thing to solve. We use SLID bonding processing to investigate. The goal is to build the microstructure design of Zn4Sb3 thermalelectronic moduals.
The results shows that using solders for bonding of Bi2Te3 thermalelectronic modules leads interface to be failed at 200℃. The coating of Ni diffusion barrier can not engage perfectly with Bi2Te3. Using SLID bonding processing can maintain the microstructure of Bi2Te3 thermalelectronic modules at 200℃ for 1000 hours. On the other hand, Zn4Sb3 materials react with Ni-Pd crystal and metallic glass shows different interface reactions. For Sputtering Ti/WTi/Ti thin film as diffusion barrier for Zn4Sb3 thermalelectronic materials, the interface is failed due to thermal expansion when bonding in high temperature. Finally, it can maintain the microstructure at 350℃for 24 hours without interface reaction.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:33:34Z (GMT). No. of bitstreams: 1
ntu-106-R04527025-1.pdf: 9767482 bytes, checksum: 87b5c5f3c76f845ca2b39b6c6d8fbc84 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XI
第壹章 前言 1
第貳章 理論及文獻回顧 4
2-1 熱電材料之發展 4
2-1-1 熱電效應及原理 5
2-1-2 熱電優值 5
2-1-3 熱電模組 7
2-2 接合製程 15
2-2-1 軟銲及硬銲 15
2-2-2 固液擴散接合 16
2-3 擴散阻障層 22
2-4 界面成長動力學 26
2-4-1 界面控制反應 27
2-4-2 擴散控制反應 28
2-5 二元系統界面反應 29
2-5-1 Cu-Sn界面反應 29
2-5-2 Ag-Sn界面反應 30
2-5-3 Ni-Sn界面反應 31
2-5-4 Ni-Zn界面反應 32
第參章 實驗方法 36
3-1 熱電材料Zn4Sb3製備 36
3-2 迴焊接合之Bi2Te3熱電模組 36
3-3 固液擴散接合製程 37
3-4 金屬玻璃與熱電材料之擴散偶 38
3-5 熱電模組高溫儲存試驗 39
3-6 熱電模組界面反應及分析 39
第肆章 實驗結果與討論 50
4-1 Altec熱電模組分析 50
4-1-1 Altec熱電模組微結構 50
4-1-2 Altec熱電模組高溫儲存實驗 51
4-2 Marlow熱電模組分析 57
4-2-1 Marlow熱電模組微結構 57
4-2-2 Marlow熱電模組高溫儲存實驗 57
4-3 中鋼熱電模組分析 61
4-4 無阻障層Bi2Te3熱電模組分析 65
4-5 預鍍錫Bi2Te3熱電模組分析 67
4-6 SLID接合Bi2Te3熱電模組分析 70
4-7 Zn4Sb3熱電材料之擴散偶 74
4-7-1 金屬玻璃Ni-Pd薄帶 74
4-7-2 結晶Ni-Pd金屬薄帶 75
4-8 Zn4Sb3熱電材料擴散阻障層 79
4-8-1 Zn4Sb3濺鍍阻障層之SLID接合 79
4-8-2 Zn4Sb3熱電模組高溫儲存 80
第伍章 結論 86
參考文獻 87
dc.language.isozh-TW
dc.subject介金屬化合物zh_TW
dc.subject熱電材料zh_TW
dc.subject擴散阻障層zh_TW
dc.subject微結構zh_TW
dc.subject界面反應zh_TW
dc.subjectIntermetallic compounden
dc.subjectThermalelectronic materialsen
dc.subjectDiffusion barrieren
dc.subjectMicrostructureen
dc.subjectInterface reactionen
dc.titleBi2Te3及Zn4Sb3熱電模組之微結構與擴散阻障層研究zh_TW
dc.titleMicrostructure and Diffusion Barrier of Bi2Te3 and Zn4Sb3 Thermoelectric Modulesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee辛正倫,李丕耀,陳勝吉
dc.subject.keyword熱電材料,擴散阻障層,微結構,界面反應,介金屬化合物,zh_TW
dc.subject.keywordThermalelectronic materials,Diffusion barrier,Microstructure,Interface reaction,Intermetallic compound,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201700802
dc.rights.note未授權
dc.date.accepted2017-05-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04527025-1.pdf
  未授權公開取用
9.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved